252 research outputs found

    Soil bacterial communities of a calcium-supplemented and a reference watershed at the Hubbard Brook Experimental Forest (HBEF), New Hampshire, USA

    Get PDF
    Soil Ca depletion because of acidic deposition-related soil chemistry changes has led to the decline of forest productivity and carbon sequestration in the northeastern USA. In 1999, acidic watershed (WS) 1 at the Hubbard Brook Experimental Forest (HBEF), NH, USA was amended with Ca silicate to restore soil Ca pools. In 2006, soil samples were collected from the Ca-amended (WS1) and reference watershed (WS3) for comparison of bacterial community composition between the two watersheds. The sites were about 125 m apart and were known to have similar stream chemistry and tree populations before Ca amendment. Ca-amended soil had higher Ca and P, and lower Al and acidity as compared with the reference soils. Analysis of bacterial populations by PhyloChip revealed that the bacterial community structure in the Ca-amended and the reference soils was significantly different and that the differences were more pronounced in the mineral soils. Overall, the relative abundance of 300 taxa was significantly affected. Numbers of detectable taxa in families such as Acidobacteriaceae, Comamonadaceae, and Pseudomonadaceae were lower in the Ca-amended soils, while Flavobacteriaceae and Geobacteraceae were higher. The other functionally important groups, e.g. ammonia-oxidizing Nitrosomonadaceae, had lower numbers of taxa in the Ca-amended organic soil but higher in the mineral soil

    Avian Incubation Inhibits Growth and Diversification of Bacterial Assemblages on Eggs

    Get PDF
    Microbial infection is a critical source of mortality for early life stages of oviparous vertebrates, but parental defenses against infection are less well known. Avian incubation has been hypothesized to reduce the risk of trans-shell infection by limiting microbial growth of pathogenic bacteria on eggshells, while enhancing growth of commensal or beneficial bacteria that inhibit or competitively exclude pathogens. We tested this hypothesis by comparing bacterial assemblages on naturally incubated and experimentally unincubated eggs at laying and late incubation using a universal 16S rRNA microarray containing probes for over 8000 bacterial taxa. Before treatment, bacterial assemblages on individual eggs from both treatment groups were dissimilar to one another, as measured by clustering in non-metric dimensional scaling (NMDS) ordination space. After treatment, assemblages of unincubated eggs were similar to one another, but those of incubated eggs were not. Furthermore, assemblages of unincubated eggs were characterized by high abundance of six indicator species while incubated eggs had no indicator species. Bacterial taxon richness remained static on incubated eggs, but increased significantly on unincubated eggs, especially in several families of Gram-negative bacteria. The relative abundance of individual bacterial taxa did not change on incubated eggs, but that of 82 bacterial taxa, including some known to infect the interior of eggs, increased on unincubated eggs. Thus, incubation inhibits all of the relatively few bacteria that grow on eggshells, and does not appear to promote growth of any bacteria

    Impact of lime, nitrogen and plant species on bacterial community structure in grassland microcosms

    Get PDF
    A microcosm-based approach was used to study impacts of plant and chemical factors on the bacterial community structure of an upland acidic grassland soil. Seven perennial plant species typical of both natural, unimproved ( Nardus stricta , Agrostis capillaris , Festuca ovina and F. rubra ) and fertilized, improved ( Holcus lanatus, Lolium perenne and Trifolium repens ) grasslands were either left unamended or treated with lime, nitrogen, or lime plus nitrogen in a 75-day glasshouse experiment. Lime and nitrogen amendment were shown to have a greater effect on microbial activity, biomass and bacterial ribotype number than plant species. Liming increased soil pH, microbial activity and biomass, while decreasing ribotype number. Nitrogen addition decreased soil pH, microbial activity and ribotype number. Addition of lime plus nitrogen had intermediate effects, which appeared to be driven more by lime than nitrogen. Terminal restriction fragment length polymorphism (TRFLP) analysis revealed that lime and nitrogen addition altered soil bacterial community structure, while plant species had little effect. These results were further confirmed by multivariate redundancy analysis, and suggest that soil lime and nitrogen status are more important controllers of bacterial community structure than plant rhizosphere effects

    Seasonal influences on fungal community structure in unimproved and improved upland grassland soils

    Get PDF
    Seasonal and management influences on the fungal community structure of two upland grassland soils were investigated. An upland site containing both unimproved, floristically-diverse (U4a) and mesotrophic, improved (MG7b) grassland types was selected, and samples from both grassland types were taken at five times in one year. Soil fungal community structure was assessed using fungal automated ribosomal intergenic spacer analysis (ARISA), a DNA-profiling approach. Grassland management regime was found to strongly affect fungal community structure, with fungal ARISA profiles from unimproved and improved grassland soils differing significantly. The number of fungal ribotypes found was higher in unimproved than improved grassland soils, providing evidence that improvement may reduce the suitability of upland soil as a habitat for specific groups of fungi. Seasonal influences on fungal community structure were also noted, with samples taken in autumn (October) more correlated with change in ribotype profiles than samples from other seasons. However, seasonal variation did not obscure the measurement of differences in fungal community structure that were due to agricultural improvement, with canonical correspondence analysis (CCA) indicating grassland type had a stronger influence on fungal profiles than season

    A novel D-xylose isomerase from the gut of the wood feeding beetle Odontotaenius disjunctus efficiently expressed in Saccharomyces cerevisiae

    Get PDF
    Carbohydrate rich substrates such as lignocellulosic hydrolysates remain one of the primary sources of potentially renewable fuel and bulk chemicals. The pentose sugar D-xylose is often present in significant amounts along with hexoses. Saccharomyces cerevisiae can acquire the ability to metabolize D-xylose through expression of heterologous D-xylose isomerase (XI). This enzyme is notoriously difficult to express in S. cerevisiae and only fourteen XIs have been reported to be active so far. We cloned a new D-xylose isomerase derived from microorganisms in the gut of the wood-feeding beetle Odontotaenius disjunctus. Although somewhat homologous to the XI from Piromyces sp. E2, the new gene was identified as bacterial in origin and the host as a Parabacteroides sp. Expression of the new XI in S. cerevisiae resulted in faster aerobic growth than the XI from Piromyces on D-xylose media. The D-xylose isomerization rate conferred by the new XI was also 72% higher, while absolute xylitol production was identical in both strains. Interestingly, increasing concentrations of xylitol (up to 8 g L-1) appeared not to inhibit D-xylose consumption. The newly described XI displayed 2.6 times higher specific activity, 37% lower KM for D-xylose, and exhibited higher activity over a broader temperature range, retaining 51% of maximal activity at 30 °C compared with only 29% activity for the Piromyces XI.This work was supported by the project FatVal PTDC/EAM-AMB/32506/2017 (POCI-01-0145-FEDER-032506), co-funded by the European Regional Development Fund (ERDF), through the Operational Programme for Competitiveness and Internationalization (COMPETE 2020), under Portugal 2020, and by the Fundacao para a Ciencia e a Tecnologia-FCT I.P through national funds. CBMA was supported by the "Contrato-Programa" UIDB/04050/2020 funded by national funds through the FCT I.P. PCS is recipient of a FCT PhD fellowship (SFRH/BD/140039/2018), and was supported by a Fulbright Scholarship Portugal grant from January to May 2020 at Lawrence Berkeley National Laboratory, Berkeley, CA, USA. BJ was awarded a Fulbright grant from The Swedish Fulbright Commission for Visiting Lecturers and Research Scholars between September 2014 and January 2015 visiting Lawrence Berkeley National Laboratory, Berkeley, CA, USA. This work was supported in part by the United States Department of Energy's Genomic Science Program (grant SCW1039). Part of this work was performed at Lawrence Berkeley National Laboratory under US Department of Energy contract number DE-AC02-05CH11231. DNA sequencing was performed at the Vincent J. Coates Genomics Sequencing Laboratory at the University of California Berkeley, supported by NIH S10 Instrumentation grants S10RR029668 and S10RR027303

    Comparative Analyses of the Bacterial Microbiota of the Human Nostril and Oropharynx

    Get PDF
    The nose and throat are important sites of pathogen colonization, yet the microbiota of both is relatively unexplored by culture-independent approaches. We examined the bacterial microbiota of the nostril and posterior wall of the oropharynx from seven healthy adults using two culture-independent methods, a 16S rRNA gene microarray (PhyloChip) and 16S rRNA gene clone libraries. While the bacterial microbiota of the oropharynx was richer than that of the nostril, the oropharyngeal microbiota varied less among participants than did nostril microbiota. A few phyla accounted for the majority of the bacteria detected at each site: Firmicutes and Actinobacteria in the nostril and Firmicutes, Proteobacteria, and Bacteroidetes in the oropharynx. Compared to culture-independent surveys of microbiota from other body sites, the microbiota of the nostril and oropharynx show distinct phylum-level distribution patterns, supporting niche-specific colonization at discrete anatomical sites. In the nostril, the distribution of Actinobacteria and Firmicutes was reminiscent of that of skin, though Proteobacteria were much less prevalent. The distribution of Firmicutes, Proteobacteria, and Bacteroidetes in the oropharynx was most similar to that in saliva, with more Proteobacteria than in the distal esophagus or mouth. While Firmicutes were prevalent at both sites, distinct families within this phylum dominated numerically in each. At both sites there was an inverse correlation between the prevalences of Firmicutes and another phylum: in the oropharynx, Firmicutes and Proteobacteria, and in the nostril, Firmicutes and Actinobacteria. In the nostril, this inverse correlation existed between the Firmicutes family Staphylococcaceae and Actinobacteria families, suggesting potential antagonism between these groups

    Microbial Phosphorus Mobilization Strategies Across a Natural Nutrient Limitation Gradient and Evidence for Linkage With Iron Solubilization Traits

    Get PDF
    Microorganisms have evolved several mechanisms to mobilize and mineralize occluded and insoluble phosphorus (P), thereby promoting plant growth in terrestrial ecosystems. However, the linkages between microbial P-solubilization traits and the preponderance of insoluble P in natural ecosystems are not well known. We tested the P solubilization traits of hundreds of culturable bacteria representative of the rhizosphere from a natural gradient where P concentration and bioavailability decline as soil becomes progressively more weathered. Aluminum, iron phosphate and organic P (phytate) were expected to dominate in more weathered soils. A defined cultivation medium with these chemical forms of P was used for isolation. A combination of soil chemical, spectroscopic analyses and 16S rRNA gene sequencing were used to understand the in situ ability for solubilization of these predominant forms of P. Locations with more occluded and organic P harbored the greatest abundance of P-mobilizing microorganisms, especially Burkholderiaceae (Caballeronia and Paraburkholderia spp.). Nearly all bacteria utilized aluminum phosphate, however fewer could subsist on iron phosphate (FePO4) or phytate. Microorganisms isolated from phytic acid were also most effective at solubilizing FePO4, suggesting that phytate solubilization may be linked to the ability to solubilize Fe. Significantly, we observed Fe to be co-located with P in organic patches in soil. Siderophore addition in lab experiments reinstated phytase mediated P-solubilization from Fe-phytate complexes. Taken together, these results indicate that metal-organic-P complex formation may limit enzymatic P solubilization from phytate in soil. Additionally, the linked traits of phytase and siderophore production were mostly restricted to specific clades within the Burkholderiaceae. We propose that Fe complexation of organic P (e.g., phytate) represents a major constraint on P turnover and availability in acidic soils, as only a limited subset of bacteria appear to possess the traits required to access this persistent pool of soil P

    Niche differentiation is spatially and temporally regulated in the rhizosphere.

    Get PDF
    The rhizosphere is a hotspot for microbial carbon transformations, and is the entry point for root polysaccharides and polymeric carbohydrates that are important precursors to soil organic matter (SOM). However, the ecological mechanisms that underpin rhizosphere carbohydrate depolymerization are poorly understood. Using Avena fatua, a common annual grass, we analyzed time-resolved metatranscriptomes to compare microbial functions in rhizosphere, detritusphere, and combined rhizosphere-detritusphere habitats. Transcripts were binned using a unique reference database generated from soil isolate genomes, single-cell amplified genomes, metagenomes, and stable isotope probing metagenomes. While soil habitat significantly affected both community composition and overall gene expression, the succession of microbial functions occurred at a faster time scale than compositional changes. Using hierarchical clustering of upregulated decomposition genes, we identified four distinct microbial guilds populated by taxa whose functional succession patterns suggest specialization for substrates provided by fresh growing roots, decaying root detritus, the combination of live and decaying root biomass, or aging root material. Carbohydrate depolymerization genes were consistently upregulated in the rhizosphere, and both taxonomic and functional diversity were highest in the combined rhizosphere-detritusphere, suggesting coexistence of rhizosphere guilds is facilitated by niche differentiation. Metatranscriptome-defined guilds provide a framework to model rhizosphere succession and its consequences for soil carbon cycling
    corecore