15 research outputs found

    The role of free endosomal epitopes in the mechanisms of amelioration and flares of rheumatoid arthritis-associated conditions: pregnancy and infective hepatitis

    No full text
    Abstract Background It is known that rheumatoid symptoms improve in pregnancy and in patients who develop infective jaundice. The mechanism of amelioration might involve the direct interaction of free endosomal self-epitopes that are released by the cells of the involved organ with antigen binding sites on the membranes of anti-idiotypic cells, resulting in possible suppressive effects. Methods Immune responses of peripheral blood mononuclear cells (PBMCs) to longstanding synovial fluid (SFMC or primary ultrafiltrate) and to the endosomal extracts enriched with self-epitope-receptor microcomplexes (MICs) were investigated. The MICs (secondary ultrafiltrate) were prepared from PBMCs that were previously cultured with SFMC ultrafiltrates and had therefore been in contact with large number of self-epitopes. Results Addition of primary ultrafiltrate to PBMCs elicited significant expansion of regulatory T cells (CTLA-4+CD4+CD25+), and reduction of CD69+CD4+CD25+ cells. In contrast, secondary ultrafiltrate, which contains the microcomplexes, produced an inflammatory response, with CD69+ cells increasing to 47% of CD4+CD25+ cells. This opposite response indicated that, in all likelihood, the response of mononuclear cells to secondary ultrafiltrate in culture involved a subset of CD4+ T cells other than those of the primary ultrafiltrate. Conclusions Free endosomal epitopes, released from the maternal-fetal interface and necrotic areas of diseased liver, inducing expansion of regulatory T cells, provided a type of endogenous, autonomic immunotherapy. The post-partum flare-up of the disease could be due to the sudden interruption of endogenous immunotherapy at delivery and to the inflammatory response to microcomplexes that are recognized by autoreactive T cells

    Lactobacillus paracasei subsp. paracasei B21060 Suppresses Human T-Cell Proliferation

    No full text
    Recent studies have shown that probiotics are beneficial in T-cell-mediated inflammatory diseases. The molecular mechanism by which probiotics work remains elusive, but accumulating evidence indicates that probiotics can modulate immune cell responses. Since T cells express receptors for bacterial products or components, we examined whether different strains of lactobacilli directly regulate the functions of human T cells. CD4(+) T cells were isolated from blood and intestinal lamina propria (LP) of normal individuals and patients with inflammatory bowel disease (IBD). Mononuclear cells were also isolated from Peyer's patches. Cells were activated with anti-CD3/CD2/CD28 in the presence or absence of Lactobacillus paracasei subsp. paracasei B21060, L. paracasei subsp. paracasei F19, or L. casei subsp. casei DG. Cell proliferation and death, Foxp3, intracellular pH, and cytokine production were evaluated by flow cytometry. We showed that L. paracasei subsp. paracasei B21060 but neither L. paracasei subsp. paracasei F19 nor L. casei subsp. casei DG inhibited blood CD4(+) T-cell growth. This effect was associated with no change in cell survival, expression of Foxp3, or production of gamma interferon, interleukin-4 (IL-4), IL-5, and IL-10. L. paracasei subsp. paracasei B21060-mediated blockade of CD4(+) T-cell proliferation required a viable bacterium and was associated with decreased MCT-1 expression and low intracellular pH. L. paracasei subsp. paracasei B21060 also inhibited the growth of Peyer's patch mononuclear cells, normal lymphocytes, and IBD CD4(+) LP lymphocytes without affecting cytokine production. The data show that L. paracasei subsp. paracasei B21060 blocks T-cell growth, thus suggesting a mechanism by which these probiotics could interfere with T-cell-driven immune responses

    A Path Toward Precision Medicine for Neuroinflammatory Mechanisms in Alzheimer's Disease

    Get PDF
    International audienceNeuroinflammation commences decades before Alzheimer's disease (AD) clinical onset and represents one of the earliest pathomechanistic alterations throughout the AD continuum. Large-scale genome-wide association studies point out several genetic variants—TREM2, CD33, PILRA, CR1, MS4A, CLU, ABCA7, EPHA1, and HLA-DRB5-HLA-DRB1—potentially linked to neuroinflammation. Most of these genes are involved in proinflammatory intracellular signaling, cytokines/interleukins/cell turnover, synaptic activity, lipid metabolism, and vesicle trafficking. Proteomic studies indicate that a plethora of interconnected aberrant molecular pathways, set off and perpetuated by TNF-α, TGF-β, IL-1β, and the receptor protein TREM2, are involved in neuroinflammation. Microglia and astrocytes are key cellular drivers and regulators of neuroinflammation. Under physiological conditions, they are important for neurotransmission and synaptic homeostasis. In AD, there is a turning point throughout its pathophysiological evolution where glial cells sustain an overexpressed inflammatory response that synergizes with amyloid-β and tau accumulation, and drives synaptotoxicity and neurodegeneration in a self-reinforcing manner. Despite a strong therapeutic rationale, previous clinical trials investigating compounds with anti-inflammatory properties, including non-steroidal anti-inflammatory drugs (NSAIDs), did not achieve primary efficacy endpoints. It is conceivable that study design issues, including the lack of diagnostic accuracy and biomarkers for target population identification and proof of mechanism, may partially explain the negative outcomes. However, a recent meta-analysis indicates a potential biological effect of NSAIDs. In this regard, candidate fluid biomarkers of neuroinflammation are under analytical/clinical validation, i.e., TREM2, IL-1β, MCP-1, IL-6, TNF-α receptor complexes, TGF-β, and YKL-40. PET radio-ligands are investigated to accomplish in vivo and longitudinal regional exploration of neuroinflammation. Biomarkers tracking different molecular pathways (body fluid matrixes) along with brain neuroinflammatory endophenotypes (neuroimaging markers), can untangle temporal–spatial dynamics between neuroinflammation and other AD pathophysiological mechanisms. Robust biomarker–drug codevelopment pipelines are expected to enrich large-scale clinical trials testing new-generation compounds active, directly or indirectly, on neuroinflammatory targets and displaying putative disease-modifying effects: novel NSAIDs, AL002 (anti-TREM2 antibody), anti-Aβ protofibrils (BAN2401), and AL003 (anti-CD33 antibody). As a next step, taking advantage of breakthrough and multimodal techniques coupled with a systems biology approach is the path to pursue for developing individualized therapeutic strategies targeting neuroinflammation under the framework of precision medicine

    A path toward precision medicine for neuroinflammatory mechanisms in Alzheimer's disease

    No full text
    Neuroinflammation commences decades before Alzheimer's disease (AD) clinical onset and represents one of the earliest pathomechanistic alterations throughout the AD continuum. Large-scale genome-wide association studies point out several genetic variants—TREM2, CD33, PILRA, CR1, MS4A, CLU, ABCA7, EPHA1, and HLA-DRB5-HLA-DRB1—potentially linked to neuroinflammation. Most of these genes are involved in proinflammatory intracellular signaling, cytokines/interleukins/cell turnover, synaptic activity, lipid metabolism, and vesicle trafficking. Proteomic studies indicate that a plethora of interconnected aberrant molecular pathways, set off and perpetuated by TNF-α, TGF-β, IL-1β, and the receptor protein TREM2, are involved in neuroinflammation. Microglia and astrocytes are key cellular drivers and regulators of neuroinflammation. Under physiological conditions, they are important for neurotransmission and synaptic homeostasis. In AD, there is a turning point throughout its pathophysiological evolution where glial cells sustain an overexpressed inflammatory response that synergizes with amyloid-β and tau accumulation, and drives synaptotoxicity and neurodegeneration in a self-reinforcing manner. Despite a strong therapeutic rationale, previous clinical trials investigating compounds with anti-inflammatory properties, including non-steroidal anti-inflammatory drugs (NSAIDs), did not achieve primary efficacy endpoints. It is conceivable that study design issues, including the lack of diagnostic accuracy and biomarkers for target population identification and proof of mechanism, may partially explain the negative outcomes. However, a recent meta-analysis indicates a potential biological effect of NSAIDs. In this regard, candidate fluid biomarkers of neuroinflammation are under analytical/clinical validation, i.e., TREM2, IL-1β, MCP-1, IL-6, TNF-α receptor complexes, TGF-β, and YKL-40. PET radio-ligands are investigated to accomplish in vivo and longitudinal regional exploration of neuroinflammation. Biomarkers tracking different molecular pathways (body fluid matrixes) along with brain neuroinflammatory endophenotypes (neuroimaging markers), can untangle temporal–spatial dynamics between neuroinflammation and other AD pathophysiological mechanisms. Robust biomarker–drug codevelopment pipelines are expected to enrich large-scale clinical trials testing new-generation compounds active, directly or indirectly, on neuroinflammatory targets and displaying putative disease-modifying effects: novel NSAIDs, AL002 (anti-TREM2 antibody), anti-Aβ protofibrils (BAN2401), and AL003 (anti-CD33 antibody). As a next step, taking advantage of breakthrough and multimodal techniques coupled with a systems biology approach is the path to pursue for developing individualized therapeutic strategies targeting neuroinflammation under the framework of precision medicine.Sorbonne University Foundation and sponsored by la Fondation pour la Recherche sur Alzheimer. HH is an employee of Eisai Inc. During his previous work (until April 2019), he was supported by the AXA Research Fund, the Fondation partenariale Sorbonne Université and the Fondation pour la Recherche sur Alzheimer, Paris, Franc

    Future avenues for Alzheimer's disease detection and therapy: Liquid biopsy, intracellular signaling modulation, systems pharmacology drug discovery

    No full text

    Sulle condizionalità del MES. Lettera degli economisti a Gualtieri

    No full text
    Lo scorso 16 settembre abbiamo pubblicato (in economiaepolitica.it e Micromega) una lettera aperta in cui le chiedevamo di fare chiarezza sulle condizioni di accesso alla linea di credito del MES finalizzata al contrasto della pandemia da Covid-19. La lettera, sottoscritta da 35 economisti di diverse università italiane, purtroppo non ha trovato risposta e allora noi insistiamo – più numerosi – nel chiedere una sua replica

    Association of plasma YKL-40 with brain amyloid-β levels, memory performance, and sex in subjective memory complainers

    No full text
    International audienc
    corecore