117 research outputs found

    Damage detection in structural systems by improved sensitivity of modal strain energy and Tikhonov regularization method

    Get PDF
    In this article, new methods for detecting damage in structural systems are presented. These methods are categorized as damage localization and damage quantification, respectively. Hence, direct changes of modal strain energy are applied to identify locations of damage. Moreover, some restraints such as incomplete measured modes and simple assumptions in structural modeling may cause failure in the results of damage localization. Therefore, a correlation-based method is utilized to obviate these limitations and precisely detect damage sites. Subsequently, an improved sensitivity of modal strain energy is generated to determine damage severities. To achieve appropriate results in damage quantification, Tikhonov regularization approach is utilized instead of classical methods such as applying penalty function and current inverse problem techniques. Applicability and effectiveness of proposed methods are numerically verified using two practical examples consisting of a planner truss and a portal frame, respectively. Eventually, numerical results indicate that the proposed damage localization approach provides an influential algorithm for precisely identifying damage sites. Furthermore, obtained damage severities show that utilizing the sensitivity of modal strain energy and also solving the damage equation by Tikhonov regularization makes it possible to accurately determine damage extents in the case of incomplete modal data

    Damage localization in shear buildings by direct updating of physical properties

    Get PDF
    The objective of this article is to present a new method for identifying the damage location in a multi-story shear building by direct model updating method. In this regard, structural perturbation matrices should be determined that are directly defined as the discrepancy between mass and stiffness matrices of undamaged and damaged structures. As a result of expanding the dynamic orthogonality conditions, mass and stiffness perturbation matrices are formulated by the initial information of undamaged structures as well as the structure’s modal parameters before and after the occurrence of damages. These matrices cannot easily detect the damage site. Therefore, a more explicit determination of damage location is performed dividing the amount of change in these matrices’ diagonals by the physical properties of undamaged structure. This modification facilitates the damage localization process and yields precise and preferable results in comparison with applying classical methods such as natural frequencies, mode shapes and structural properties changes. Subsequently, the applicability and effectiveness of the proposed damage detection method are verified numerically and experimentally. For numerical verification of the proposed methods, a six-story shear building is utilized as a discrete system. Then, the experimental verification of proposed methods is conducted detecting the location of damages in a simple laboratory frame. It can be deduced that the proposed damage localization method can reliably detect and also localize the structural damage

    Improving feature extraction via time series modeling for structural health monitoring based on unsupervised learning methods

    Get PDF
    Feature extraction by time series modeling based on statistical pattern recognition is a powerful approach to Structural Health Monitoring (SHM). Determination of an adequate order and identi cation of an appropriate model play prominent roles in extracting sensitive features to damage from time series representations. Early damage detection under statistical decision-making via high-dimensional features is another signi cant issue. The main objectives of this study were to improve a residual-based feature extraction method by time series modeling and to propose a multivariate data visualization approach to early damage detection. A simple graphical tool based on Box-Jenkins methodology was adopted to identify the most compatible time series model with vibration time-domain measurements. Furthermore, k-means and Gaussian Mixture Model (GMM) clustering techniques were utilized to examine the performance of the residuals of the identi ed model in damage detection. A numerical concrete beam and an experimental benchmark model were applied to verifying the improved and proposed methods along with comparative analyses. Results showed that the approaches were successful and superior to a state-of-the-art order determination technique in obtaining a sufficient order, generating uncorrelated residuals, extracting sensitive features to damage, and accurately detecting early damage by high-dimensional data

    Damage Detection in Largely Unobserved Structures under Varying Environmental Conditions: An AutoRegressive Spectrum and Multi-Level Machine Learning Methodology

    Get PDF
    Vibration-based damage detection in civil structures using data-driven methods requires sufficient vibration responses acquired with a sensor network. Due to technical and economic reasons, it is not always possible to deploy a large number of sensors. This limitation may lead to partial information being handled for damage detection purposes, under environmental variability. To address this challenge, this article proposes an innovative multi-level machine learning method by employing the autoregressive spectrum as the main damage-sensitive feature. The proposed method consists of three levels: (i) distance calculation by the log-spectral distance, to increase damage detectability and generate distance-based training and test samples; (ii) feature normalization by an improved factor analysis, to remove environmental variations; and (iii) decision-making for damage localization by means of the Jensen-Shannon divergence. The major contributions of this research are represented by the development of the aforementioned multi-level machine learning method, and by the proposal of the new factor analysis for feature normalization. Limited vibration datasets relevant to a truss structure and consisting of acceleration time histories induced by shaker excitation in a passive system, have been used to validate the proposed method and to compare it with alternate, state-of-the-art strategies

    A novel double-hybrid learning method for modal frequency-based damage assessment of bridge structures under different environmental variation patterns

    Get PDF
    Monitoring of modal frequencies under an unsupervised learning framework is a practical strategy for damage assessment of civil structures, especially bridges. However, the key challenge is related to high sensitivity of modal frequencies to environmental and/or operational changes that may lead to economic and safety losses. The other challenge pertains to different environmental and/or operational variation patterns in modal frequencies due to differences in structural types, materials, and applications, measurement periods in terms of short and/or long monitoring programs, geographical locations of structures, weather conditions, and influences of single or multiple environmental and/or operational factors, which may cause barriers to employing stateof-the-art unsupervised learning approaches. To cope with these issues, this paper proposes a novel double-hybrid learning technique in an unsupervised manner. It contains two stages of data partitioning and anomaly detection, both of which comprise two hybrid algorithms. For the first stage, an improved hybrid clustering method based on a coupling of shared nearest neighbor searching and density peaks clustering is proposed to prepare local information for anomaly detection with the focus on mitigating environmental and/or operational effects. For the second stage, this paper proposes an innovative non-parametric hybrid anomaly detector based on local outlier factor. In both stages, the number of nearest neighbors is the key hyperparameter that is automatically determined by leveraging a self-adaptive neighbor searching algorithm. Modal frequencies of two full-scale bridges are utilized to validate the proposed technique with several comparisons. Results indicate that this technique is able to successfully eliminate different environmental and/or operational variations and correctly detect damage

    A Multi-stage Machine Learning Methodology for Health Monitoring of Largely Unobserved Structures Under Varying Environmental Conditions

    Get PDF
    Structural Health Monitoring (SHM) via data-driven techniques can be based upon vibrations acquired by sensor networks. However, technical and economic reasons may prevent the deployment of pervasive sensor networks over civil structures, thus limiting their reliability in terms of damage detection. Moreover, the effects of environmental (and operational) variability may lead to false alarms. To address these challenges, a multi-stage machine learning (ML) method is here proposed by exploiting autoregressive (AR) spectra as damage-sensitive features. The proposed method is framed as follows: (i) computing the distances between different sets of the AR spectra via the log-spectral distance (LSD), providing also the training and test datasets; (ii) removing the potential environmental variability by an auto-associative artificial neural network (AANN), to set normalized training and test datasets; (iii) running a statistical analysis via the Mahalanobis-squared distance (MSD) for early damage detection. The effectiveness of the proposed approach is assessed in the case of limited vibration data for the laboratory truss structure known as the Wooden Bridge. Comparative studies show that the AR spectrum is a reliable feature, sensitive to damage even in the presence of a limited number of sensors in the network; additionally, the multi-stage ML methodology succeeds in early detecting damage under environmental variability

    Detection of Partially Structural Collapse Using Long‐Term Small Displacement Data from Satellite Images

    Get PDF
    The development of satellite sensors and interferometry synthetic aperture radar (InSAR) technology has enabled the exploitation of their benefits for long‐term structural health monitoring (SHM). However, some restrictions cause this process to provide a small number of images leading to the problem of small data for SAR‐based SHM. Conversely, the major challenge of the long‐term monitoring of civil structures pertains to variations in their inherent properties by environmental and/or operational variability. This article aims to propose new hybrid unsupervised learning methods for addressing these challenges. The methods in this work contain three main parts: (i) data augmentation by the Markov Chain Monte Carlo algorithm, (ii) feature normalization, and (iii) decision making via Mahalanobis‐squared distance. The first method presented in this work develops an artificial neural network‐based feature normalization by proposing an iterative hyperparameter selection of hidden neurons of the network. The second method is a novel unsupervised teacher– student learning by combining an undercomplete deep neural network and an overcomplete single-layer neural network. A small set of long‐term displacement samples extracted from a few SAR images of TerraSAR‐X is applied to validate the proposed methods. The results show that the methods can effectively deal with the major challenges in the SAR‐based SHM applications

    Online hybrid learning methods for real-time structural health monitoring using remote sensing and small displacement data

    Get PDF
    Structural health monitoring (SHM) by using remote sensing and synthetic aperture radar (SAR) images is a promising approach to assessing the safety and the integrity of civil structures. Apart from this issue, artificial intelligence and machine learning have brought great opportunities to SHM by learning an automated computational model for damage detection. Accordingly, this article proposes online hybrid learning methods to firstly deal with some major challenges in data-driven SHM and secondly detect damage via small displacement data from SAR images in a real-time manner. The proposed methods contain three main parts: (i) data augmentation by Hamiltonian Monte Carlo and slice sampling for addressing the problem of small displacement data, (ii) data normalization by an online deep transfer learning algorithm for removing the effects of environmental and/or operational variability from augmented data, and (iii) feature classification via a scalar novelty score. The major contributions of this research include proposing two online hybrid unsupervised learning methods and providing effective frameworks for online damage detection. A small set of displacement samples extracted from SAR images of TerraSar-X regarding a long-term monitoring scheme of the Tadcaster Bridge in United Kingdom is applied to validate the proposed methods

    Investigation of Temperature Effects into Long-Span Bridges via Hybrid Sensing and Supervised Regression Models

    Get PDF
    Temperature is an important environmental factor for long-span bridges because it induces thermal loads on structural components that cause considerable displacements, stresses, and structural damage. Hence, it is critical to acquire up-to-date information on the status, sustainability, and serviceability of long-span bridges under daily and seasonal temperature fluctuations. This paper intends to investigate the effects of temperature variability on structural displacements obtained from remote sensing and represent their relationship using supervised regression models. In contrast to other studies in this field, one of the contributions of this paper is to leverage hybrid sensing as a combination of contact and non-contact sensors for measuring temperature data and structural responses. Apart from temperature, other unmeasured environmental and operational conditions may affect structural displacements of long-span bridges separately or simultaneously. For this issue, this paper incorporates a correlation analysis between the measured predictor (temperature) and response (displacement) data using a linear correlation measure, the Pearson correlation coefficient, as well as nonlinear correlation measures, namely the Spearman and Kendall correlation coefficients and the maximal information criterion, to determine whether the measured environmental factor is dominant or other unmeasured conditions affect structural responses. Finally, three supervised regression techniques based on a linear regression model, Gaussian process regression, and support vector regression are considered to model the relationship between temperature and structural displacements and to conduct the prediction process. Temperature and limited displacement data related to three long-span bridges are used to demonstrate the results of this research. The aim of this research is to assess and realize whether contact-based sensors installed in a bridge structure for measuring environmental and/or operational factors are sufficient or if it is necessary to consider further sensors and investigations
    • 

    corecore