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Abstract: Temperature is an important environmental factor for long-span bridges because it induces
thermal loads on structural components that cause considerable displacements, stresses, and struc-
tural damage. Hence, it is critical to acquire up-to-date information on the status, sustainability, and
serviceability of long-span bridges under daily and seasonal temperature fluctuations. This paper
intends to investigate the effects of temperature variability on structural displacements obtained
from remote sensing and represent their relationship using supervised regression models. In contrast
to other studies in this field, one of the contributions of this paper is to leverage hybrid sensing as
a combination of contact and non-contact sensors for measuring temperature data and structural
responses. Apart from temperature, other unmeasured environmental and operational conditions
may affect structural displacements of long-span bridges separately or simultaneously. For this issue,
this paper incorporates a correlation analysis between the measured predictor (temperature) and
response (displacement) data using a linear correlation measure, the Pearson correlation coefficient,
as well as nonlinear correlation measures, namely the Spearman and Kendall correlation coefficients
and the maximal information criterion, to determine whether the measured environmental factor
is dominant or other unmeasured conditions affect structural responses. Finally, three supervised
regression techniques based on a linear regression model, Gaussian process regression, and sup-
port vector regression are considered to model the relationship between temperature and structural
displacements and to conduct the prediction process. Temperature and limited displacement data
related to three long-span bridges are used to demonstrate the results of this research. The aim of
this research is to assess and realize whether contact-based sensors installed in a bridge structure for
measuring environmental and/or operational factors are sufficient or if it is necessary to consider
further sensors and investigations.

Keywords: temperature; displacement; remote sensing; structural health monitoring; long-span
bridge; regression

1. Introduction

Bridges are vital civil structures that play significant roles in transportation, social life,
and economics. During their long-term service life, bridges may be subjected to various
unpredictable excitation sources such as earthquakes, wind, floods, typhoons, etc. Apart
from such conditions, temperature is an important environmental factor that can induce
considerable loads to bridge structures and cause large displacements or deformations.
To preserve such vital structures from any type of irreparable damage and undesirable
serviceability, structural health monitoring (SHM) has emerged in civil engineering. This
technology aims to provide a practical process for continuously monitoring civil structures,
particularly bridges [1–5], and to warn of any abnormal event caused by any source
of excitations.
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Due to advancement in sensing technology, computer systems, and computational
techniques, particularly in the field of artificial intelligence, an SHM strategy is often
implemented under machine learning algorithms [6,7]. In this regard, it suffices to measure
raw structural responses through various sensors, store and transmit measured data, extract
meaningful information/features (i.e., feature extraction), and apply machine learning
methods for decision-making (i.e., classification, regression, prediction, anomaly detection,
etc.). Sensing technology is an important part of an SHM strategy [8,9]. The classical
sensing techniques concentrate on contact sensors (e.g., accelerometers, strain gages, fiber
optic sensors, temperature sensors, anemometers, etc.) with the aids of wired or wireless
data transformation systems. In addition to this technology, the measurement of structural
responses can be implemented by next-generation sensors via devices such as digital
cameras, video cameras, high-speed cameras, and smartphones [10]. The major goal of this
technology is to provide optical images and videos and to extract structural responses (e.g.,
displacements).

Despite the applicability of both contact and non-contact sensing systems, it is not al-
ways trivial to utilize them, especially in long-term SHM programs on large structures, due
to recording and storing massive SHM data and the limitation of a dense sensor network
for capturing all possible conditions. Recently, the technology of spaceborne remote sensing
via synthetic aperture radar (SAR) images from satellites has received increasing attention
among civil engineers for SHM applications [11–17]. The main objective of this technology
is to prepare SAR images from a satellite (e.g., COSMO-SkyMed, TerraSar-X, Sentinel-1)
and utilize interferometric synthetic aperture radar (InSAR) techniques [18] in order to
extract displacement data as the main structural responses/features from target points
marked on the structure. The great advantage of the SAR-based SHM is the possibility of
obtaining prior information or archived images of civil structures regarding their initial
or normal conditions. The other benefit of this strategy is to measure sufficient structural
responses in terms of small data for a long-term monitoring program. Furthermore, it is
feasible to cover a wide area of the earth and a huge structure (e.g., dams and long-span
bridges) without considering a dense sensor network.

Apart from the structural responses, it is possible to measure some important envi-
ronmental data such as temperature, humidity, and wind speed and direction by some
contact-based sensors [19]. In fact, the feasibility of the measurement of environmental
data is a great advantage of the contact-sensing technique. Using such measurements, one
can gain deep realization into the relationship between the structural responses and envi-
ronmental conditions. One of the significant challenges in long-term SHM is the influence
of temperature on long-span bridges. This is because such an environmental factor changes
daily and seasonally, in which case temperature variability may induce thermal loads on
the bridges, leading to large displacements/deformations and undesirable stresses [20].
Thermal loads can cause cracking if the structure or structural part is restrained from move-
ment (e.g., clamped boundary conditions). Accurate thermal load values must therefore
be used in bridge design based on knowledge of the actual temperature distribution in
the bridge. On the other hand, among all environmental variability cases, it has been
proven that daily and seasonal temperature fluctuations have the highest influences on the
structural properties [21,22]. An important effect of thermal loads is that they can influence
long-span structures when operating normally or even when closed to traffic. This means
that, in contrast to other excitation loads such as earthquakes, typhoons, etc., the thermal
loads are applied to the bridge permanently. In particular, large-scale and long-span bridge
structures in open environment are often subjected to periodically time-varying solar ra-
diation and unceasing structural heat exchange. For these reasons, it is indispensable to
investigate structural performance and behavior under temperature effects.

Studies on temperature effects are often conducted under three categories: (1) cor-
relation analysis between structural responses (i.e., displacements, modal data, etc.) and
temperature, (2) modeling the relationship between structural response and temperature
data, and (3) residual extraction in terms of data normalization. In the first category, one
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attempts to determine the rate of correlation or dependence between the temperature and
structural responses [23,24]. The main requirement for this process is to measure the envi-
ronmental data (temperature) and utilize a correlation measure. The correlation analysis
allows us to deeper realize the main reasons for structural changes. A high correlation
means that temperature or thermal loads are the key structural variability. In contrast, a
low correlation indicates that other unmeasured environmental or excitation conditions
affect the structure. However, the major challenge in this process is the poor performance
of linear correlation measures for correctly representing the nonlinear correlation between
temperature and structural responses such as modal frequencies. Accordingly, one of the
issues considered in this paper is to introduce a nonlinear correlation measure.

The second category is the primary step of the residual analysis and data normalization.
In this process, one needs to model the relationship between the temperature and structural
responses. Due to the measurement of temperature data, supervised regression techniques
are the most appropriate choices [25]. Finally, the third category exploits the outputs of the
previous steps in order to remove temperature-induced effects from structural responses
and provide normalized data insensitive to environmental (temperature) variability. In
the context of SHM, this strategy is called data normalization [26]. One of the important
merits of this process is to provide valuable information sensitive to structural properties.
On this basis, any change in the normalized structural responses can be interpreted as
damage. Data normalization is dependent on the possibility of measuring environmental
and/or operational data, which is decomposed into input-output (supervised) [27,28] and
output-only (unsupervised) [29–33] algorithms, for which the terms “input” and “output”
refer to the environmental (e.g., temperature) and structural response data, respectively.

1.1. Related Works and Challenges

The influence of temperature variability on large-scale structures is a critical issue in
SHM. This issue relates to two important facts. First, daily and seasonal temperature fluctu-
ations can produce thermal loads, which can cause critical structural responses. Second,
the temperature changes can lead to variability in structural responses and such changes
may mistakenly interpreted as damage, which is known as a false-positive error [34]. In
some cases, such as freezing weather, the intensity of variability in structural responses is
significantly larger than conditions caused by damage [32]. Therefore, it is indispensable to
study the effect of temperature on the structural responses of large-scale structures, such
as long-span bridges, in numerical studies [35–37] and through experimental and field
monitoring data [38–41].

Having considered the strong influences of temperature and thermal loads on struc-
tural responses, modeling of the temperature and structural responses can provide deep
insights into structural behavior, as well as comprehensive understanding of the tempera-
ture distribution and its variability in civil structures and the development of their design,
maintenance, and rehabilitation procedures. For these purposes, supervised regression
methods provide tried-and-tested algorithms. These methods can not only model the rela-
tionship between any environmental/operational condition and structural responses but
also implement the problem of prediction. Having considered some dynamic features, such
as modal frequencies and strains, the commonly used supervised regression techniques
for modeling and prediction include some non-parametric regressors such as multiple
regression models [23,42,43] and elaborate parametric regressors, such as various artificial
neural networks (ANNs) [25,44], support vector regression (SVR), regression trees, and
random forests [25,45].

Despite the considerable studies on modeling the temperature and structural responses
from contact-based sensing systems and well-known structural features such as modal fre-
quencies, one of the main shortcomings in this field relates to the scarce research using new
structural responses such as displacement data acquired from remote-sensing technology.
Huang et al. [46] studied the influences of the ambient temperature on limited displacement
samples from 29 SAR images of Sentinel-1 on a long-span bridge. In their research, the
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authors only applied linear regression models to measure the correlation between the
displacement and temperature data. Qin et al. [47] investigated the temperature variations
in limited displacement points from SAR images of COSMO-SkyMed and Sentinel-1 on a
steel arch bridge. Similarly, linear regression models were used to perform the correlation
analysis between the displacement and temperature data. Apart from such little research
on the important field of temperature effects on structural responses, the other shortcoming
is related to the problem of limited data for regression modeling and prediction. It is well
known that SAR-based SHM is a process performed with small or limited data compared
to other SHM projects [12], especially those based on contact-based sensing systems.

Finally, the major challenge in long-term SHM via remote sensing is the influences of
other unmeasured environmental and/or operational factors. Although the equipment of
long-span bridges with various contact-based sensors for measuring different environmen-
tal and/or operational factors (e.g., temperature, humidity, wind speed and direction, traffic,
etc.) is prevalent [48–50], some restrictions, such as total costs, difficulties in data measure-
ment, transmission, and management, sensor malfunctions, etc., can make it unattainable
to measure all environmental and/or operational parameters. Under such circumstances,
the use of supervised regression models with insufficient predictor data (inputs) may be
problematic with erroneous results. Therefore, this research intends to investigate whether
bridge structural behavior and responses in conjunction with the remote-sensing technol-
ogy are influenced by measured environmental factor (i.e., temperature in this study) or
other unmeasured environmental and/or operational conditions are influential. In simple
terms, this research enables us to find whether the environmental/operational sensors
installed in a bridge structure are adequate or whether it is necessary to use further sensors
and information.

1.2. Objectives

This paper focuses on three main categories to address some major challenges related
to long-term SHM and to enhance this process using hybrid sensing as a combination of
contact and spaceborne remote sensors. The three categories include (1) determining the
correlation between the temperature and limited displacement data obtained from SAR
images, (2) modeling the structural responses under temperature variability and thermal
loads by supervised regression methods and then predicting the SAR-based displacement
data, and (3) analyzing whether temperature sensors are sufficient or whether the bridge
structure under study needs further contact-based sensors for measuring other environ-
mental and/or operational conditions or additional investigations related to the probability
of existence of damage. For the first category, the correlation analysis began using a linear
measure the Pearson linear correlation coefficient. In the case of nonlinear correlation
between the temperature and structural responses, such linear measure may fail in correctly
estimating the correlation patterns. To address this drawback, this paper investigates the
use of the Spearman correlation coefficient, Kendall correlation coefficient, and the maximal
information criterion (MIC), all suitable for nonlinear cases. Regarding the second category,
three supervised regression techniques, including a linear regression model (LRM), Gaus-
sian process regression (GPR), and support vector regression (SVR), were applied to model
the relationship between the temperature and limited displacement data. Since GPR and
SVR are parametric algorithms, Bayesian hyperparameter optimization was considered to
optimize the main hyperparameters of these models. Once the supervised regression mod-
els were established, the limited displacement data retrieved from a few SAR images were
predicted through the single predictor data (i.e., temperature records). The third category
involves the installed contact-based sensors in the bridge structure. In essence, it reflects the
outputs of the previous two categories. If there is a correlation between the temperature and
displacement data or a supervised regression method yields a high prediction (regression)
accuracy, one can realize that the environmental/operational sensors (i.e., temperature
sensors in this research) installed in the structure are sufficient, and other contact-based sen-
sors are unnecessary for structural behavior assessment and displacement monitoring. In
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contrast, if there is not a correlation or the supervised regression method fails in yielding a
high prediction accuracy, one can conclude that the environmental/operational sensors are
insufficient, and it is necessary to install further sensors for measuring other environmental
and/or operational conditions. In this case, an early damage assessment may be needed
to determine whether the poor correlation is caused by damage. For the verification of
the three categories, three kinds of long-span bridge structures with limited displacement
data from well-known satellites (i.e., COSMO-SkyMed, TerraSar-X, and Sentinel-1) were
considered to conduct this study.

1.3. Contributions

The major contributions of this research can be summarized as: (1) performing a
comprehensive study on the influence of temperature variability on limited displacement
data of some real-world long-span bridges via various approaches, (2) leveraging the
idea of hybrid sensing by two different sensing techniques, (3) using nonlinear correla-
tion measures for cases when there is a nonlinear relationship between temperature and
displacement data, and (4) making a decision on the sufficiency of contact-based sensors
for measuring the single environmental factor, i.e., temperature. In relation to the first
contribution, this paper incorporates three steps of correlation analysis, supervised regres-
sion models for representing the relationship between the temperature and displacement
data, and prediction. Compared to most of the research studies focusing on modal data
identified from acceleration time histories, limited displacement samples extracted from
SAR images were utilized to evaluate the thermal effects on long-span bridges. One of
the great advantages of the correlation analysis is that it allows us to realize whether the
temperature is the dominant variability factor or whether other environmental and/or
operational factors affect structural responses (displacement data). Regarding the second
contribution, the key novel part of this research is to leverage two kinds of sensing tech-
niques, including contact-based temperature sensors for recording temperature variability
and non-contact remote sensors in satellites and SAR images for structural displacement
data. For the third contribution, the proposed MIC measure, in addition to the Spearman
and Kendall correlation coefficients, can deal with the limitation of the linear correlation
coefficient for determining the nonlinear correlation pattern between the temperature and
displacement data.

2. Long-Span Bridges
2.1. Dashengguan Bridge

This civil structure is a long-span high-speed railway steel bridge that crosses over
Yangtze River in Nanjing, China. Figure 1a shows an actual image of this bridge. The
construction of this structure began in 2006 and ended in 2010 to handle a speed of 300 km/h.
The bridge consists of a large-span continuous steel arch truss with a total length of 1615 m.
This research considers the six main parts of the bridge with the total length of 1272 m
(i.e., 108, 192, 336, 336, 192, and 108 m) as depicted in Figure 1b. These parts are separated
by seven piers (Piers #4–10) mounted on deep piles. The two main spans over the major
navigation channels of the Yangtze River are steel arch trusses with lengths of 336 m and
a maximum height of 74 m. The non-curved parts of the bridge have a constant height
of 16 m [46]. The arches are comprised of three truss planes above the deck. The main
truss has a welded, monolithic joint. The members and gusset plates were welded together
in the fabrication yard and then transported to the site and spliced outside the joint with
high-strength bolts.

For the investigation of the temperature effects, this paper utilized limited displacement
samples extracted from 29 SAR images of Sentinel-1A acquired between 25 April 2015 and
5 August 2016. Indeed, these samples were obtained from the research by Huang et al. [46]
based on the persistent scatterer interferometry (PSI) technique for extracting the displace-
ment data on the six piers (i.e., Piers #4–6 and #8–10) by determining the light-of-sight
(LOS) deformation time series. Moreover, some contact-based temperature sensors were
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installed in the bridge to record temperature data during the monitoring time. Figure 2a
shows the 29 displacement samples (i.e., in the unit of mm) at the six pier locations, and
Figure 2b indicates their corresponding air temperature (◦C).
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2.2. Lupu Bridge

This civil structure is a steel arch bridge that crosses the Huangpu River in Shanghai,
China. Construction of this bridge began in 2000, and the bridge opened to traffic in 2003.
Figure 3a shows an actual image of the Lupu Bridge. The main bridge structure has a total
length of 750 m, including two side spans of 100 m and a main span of 550 m, as shown in
Figure 3b. The girder in the side span (i.e., above the arch rib) is a closed steel box with a
width of 41 m and a height of 2.7 m. The box-girder is fixed with the arch ribs, columns,
and an end crossbeam of the side spans. The girder of the main span is an open steel
box-beam including double main box-girders connected by open crossbeams. The width
and height of the main span girder are 39.5 m and 2.7 m, respectively. The girder of the
main span is supported on the arch rib by suspenders and connected to the integral arch
and girder segment of the side span by bearings at the two ends. In order to balance the
huge horizontal thrust of the main span, strong horizontal cables were placed between the
two ends of both side span arches. The stiffening girders are supported either directly on
the arch rib or by columns from below or by suspenders from above. The stiffening girders
of the side spans are fixed with the ribs of the side arch and main arch, while the girder of
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the main span is supported with sliding bearings on the crossbeams at the intersections of
the arch rib and girder.
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Due to the sensitivity of the Lupu Bridge to geological and environmental conditions,
a SAR-based SHM strategy was carried out to extract displacements of the main span and
dome using 38 Stripmap images of TerraSAR-X between 2013 and 2016 [47]. Figure 4a,b
indicates the displacement samples of the bridge dome and its main span, respectively.
Some contact-based temperature sensors were also considered to record temperature data
during the monitoring period. Figure 4c illustrates the recorded temperature data utilized
in this paper obtained from the research by Qin et al. [47].
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2.3. Rainbow Bridge

This civil structure is a long-span concrete-filled steel tubular arch bridge in Tianjin,
China. The bridge was built in 1996 and then opened to traffic at the end of 1998. Figure 5a
shows an actual image of the Rainbow Bridge. The total length of this bridge corresponds
to 1215.69 m, while the main bridge structure contains three spans with lengths of 164, 168,
and 164.7 m, with a width of 32 m. The structure of the Rainbow Bridge includes a rigid
arch system with a simple supported down-bearing flexible tie rod. The upper and lower
chords along with the arch skewback are filled with micro-expansive concrete. There are
eight K-shape transverse bracings of each span. Each arch contains 18 pairs of suspenders
with a spacing of 8.3 m, and each suspender is composed of 91 galvanized prestressed steel
wires. The deck system consists of prestressed concrete middle cross girder, reinforced
concrete T-shaped stiffened longitudinal girder, and T-shaped longitudinal girder [51].
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Figure 5. (a) The Rainbow Bridge, (b) the side view and main dimensions.

Due to the long-term passage of overweight vehicles for exceeding the design load,
serious damage patterns have affected the performance and serviceability of the Rainbow
Bridge. Hence, some cracks were detected at a longitudinal concrete beam of the bridge,
which caused varying levels of damage in the two adjacent longitudinal concrete beams.
In the following, all longitudinal concrete beams were replaced to increase the bridge
structural performance and to avoid any catastrophic events such as failure and collapse. A
long-term SAR-based SHM study was implemented by Qin et al. [47] to use 53 SAR images
from Sentinel-1A between 2015 and 2017. Figure 6a,b illustrates the displacement samples
in Piers 1–4 and Spans 1–3, respectively. Moreover, Figure 6c displays the temperature
records during the monitoring time. It should be pointed out that a multi-temporal DInSAR
technique was incorporated to extract the displacement data. The temperature values were
measured by a contact-based sensor on the bridge.
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3. Correlation Analysis

The initial step after measuring the environmental data and structural responses is
to detect the relationship between them. The great advantage of this process is that one
can determine whether the measured environmental data affects the structural responses,
or whether the other environmental condition or even damage leads to changes in the
structural responses. This strategy also helps us to find the most appropriate data normal-
ization technique for removing the environmental and environmental effects. Accordingly,
the measured temperature data acquired from contact-based sensors, along with limited
displacement samples from some SAR images, were considered to find their relationships.
For this purpose, the most effective and efficient choice was to exploit non-parametric
correlation analysis methods.

In statistics, correlation analysis is a statistical technique to measure the strength of the
relationship between two variables and compute their association. Simply speaking, this
technique computes the level of change in one variable due to the change in the other one.
A high correlation level indicates a strong relationship between the two variables, while a
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low correlation means that the variables are weakly associated. Pearson’s linear correlation
coefficient is the most used technique for correlation analysis due to its simplicity and
efficiency. Pearson’s correlation coefficient is defined as the covariance of two variables
divided by the product of their standard deviations. For the two variables (vectors) x and
y with n data points, the sample version of the Pearson’s linear correlation coefficient is
given by:

ρ =
∑n

i=1 (xi − x)(yi − y)(
∑n

i=1(xi − x)2∑n
i=1(yi − y)2

) 1
2

(1)

where x and y denote the means of the vectors x and y, respectively. The values of ρ vary
in the range from −1 to 1, where −1 and 1 represent perfect linear negative and positive
correlations. Moreover, in the case of independence of the two variables, ρ = 0, but the vice
versa is not necessarily true. The Spearman correlation coefficient is a non-parametric rank-
based measure of correlation that aims to measure the strength of association between two
variables. In contrast to the Pearson linear correlation coefficient, the Spearman correlation
assesses linear and non-linear relationships between the variables x and y. In addition,
in the absence of the Pearson coefficient (which has problems of existence linked to the
existence of the second-order moments of the variables x and y), the Spearman coefficient
always exists [52], according to Salvadori et al. (2007). Equation (2) provides the sample
version of the Spearman correlation coefficient:

ρS = 1− 6δ2

n(n2 − 1)
(2)

where δ denotes the difference between the rank of the variables (vectors) x and y. Similar
to the Pearson correlation coefficient, ρS can range from −1 to 1, where the former indicates
a perfect negative correlation, and the latter refers to a perfect positive correlation. In
addition, in the case of the independence of the two variables, ρS = 0, but the vice versa
is not necessarily true. Similarly to the Spearman coefficient, the Kendall correlation
coefficient is a non-parametric rank-based measure of correlation. In addition, the Kendall
coefficient always exists. Given the vectors x and y with n data points, the sample version
of the Kendall’s correlation coefficient is given by:

τ =
2K

n(n− 1)
(3)

where

K =
n−1

∑
i=1

n

∑
j=i+1

ξ
(

xi, xj, yi, yj
)

(4)

and

ξ
(
xi, xj, yi, yj

)
=


1 i f

(
xi − xj

)(
yi − yj

)
> 0

0 i f
(
xi − xj

)(
yi − yj

)
= 0

−1 i f
(
xi − xj

)(
yi − yj

)
< 0

(5)

Similarly, the Kendall coefficient ranges from −1 to 1. A value of −1 implies a perfect
negative relationship, while a value of 1 indicates that the two variables have a perfect
positive association. In the case of the independence of the two variables, τ = 0, but
the vice versa is not necessarily true. It should be pointed that, in the absence of the
Pearson correlation coefficient, the Kendall and Spearman correlation coefficients assess
the statistical associations based on the ranks of datasets.

One of the main drawbacks of the Pearson linear correlation coefficient is related to
measuring only the linear correlation between two variables. To address this limitation,
Reshef et al. [53] proposed the idea of MIC. This technique is a non-parametric measure
of the degree of linear or nonlinear association between two variables. The key premise
behind the MIC is based on maximal information theory. Intuitively, MIC is inspired by
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the idea that if a relationship exists between two variables, it is possible draw a grid on the
scatter plot of the two variables that partitions the data to encapsulate that relationship.
Hence, one can explore all grids up to a maximal grid resolution for every pair of x and
y, dependent on the sample size, to calculate the MIC. In this regard, the largest possible
mutual information achievable by any x-by-y grid applied to the data is equal to the MIC
value between the variables x and y. For simplicity and correlation analysis, the normalized
values of the mutual information are considered to ensure a fair comparison between grids
of different dimensions and obtain the modified MIC quantities, which vary between 0
and 1, where MIC = 1 refers to a strong linear or nonlinear correlation and MIC ≈ 0 means
no correlation. We assumed that Mxy is the characteristic matrix containing the highest
normalized mutual information achieved by any x-by-y grid, defined here as mxy. The
entry in the characteristic matrix can be expressed as follows:

mxy =
max(IG)

log(min(xi, yi))
(6)

where IG denotes the mutual information of the probability distribution induced on the
boxes of G, where the probability of a box is proportional to the number of data points
falling inside the box. On this basis, the MIC is the maximum of mxy such that xiyi < B,
where B = n0.6.

4. Supervised Regression Models
4.1. Linear Regression Model

A LRM is the simplest regression method that aims at describing the linear relation-
ship between a dependent variable or output y and an independent variable or input x.
Assuming that both the input and output datasets contain n data samples, the LRM was
defined as follows:

y = β0 +
n

∑
k=1

βkxk + e (7)

where βk is the kth coefficient; β0 denotes the constant term in the model; and n is the
number of predictor and response data. xk is the kth sample of the predictor data. Moreover,
e is the noise or random error term in the linear regression, which is the same residual
function. The coefficients of the regression model are estimated by minimizing the mean
squared error (MSE) between the prediction ŷ and the real response y. Apart from this
criterion, the R-squared (R2) value is a statistical measure that presents a goodness-of-fit of
the regression models. This statistic indicates the rate of variance in the dependent variable
(output) that the independent variable explains collectively. On this basis, it can help to
understand how well the model fits the data and represent the strength of the relationship
between the linear model and the output in the range of 0–1. The R-squared value assesses
the scatter of the data samples around the fitted regression model/line. In this regard, a
higher R-squared value represents a smaller difference between the observed data and the
fitted values. Having considered the real and predicted data, the R-squared value was
formulated as follows:

R2 = 1− SSR
SST

(8)

where SSR and SST stand for the residual sum of squares and total sum of squares, respec-
tively. These expressions can be defined as:

SSR =
n

∑
i=1

(yi − ŷi)
2 (9)

SST =
n

∑
i=1

(yi − y)2 (10)
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where y refers to the mean value of the real response y. In the best condition, the estimated
or predicted values match the observed or real values exactly, which results in SSR = 0
and R2 = 1. Once the best model has been developed, which leads to the best regression
coefficients, the predicted data can be derived from the following equation:

ŷ =

(
β0 +

n

∑
k=1

βkxk

)
(11)

Note that training and test ratios equal to 80% and 20% were considered to develop a
LRM and predict the displacement data.

4.2. Gaussian Process Regression

For performing the regression and prediction issues, the GPR introduces a probabilistic
kernel-based supervised regressor [54]. The Gaussian process theory is the basis of the
GPR modeling. This theory refers to a stochastic process that aims at representing the
observations of random samples. In simple terms, in statistics, a set of random samples
is called Gaussian process if any portion of these samples is mutually Gaussian. In this
regard, a GPR model can make predictions incorporating prior knowledge (kernels) and
provide uncertainty measures over predictions [55].

In the regression problem via the GPR, it is considered that this model intends to
model the relationship between the response data y by having the predictor data x in the
following form:

y = f (x) + e (12)

where e is the model residual or noise. Although Equation (12) resembles a linear regression,
in the GPR, one supposes that f (x) is also a random variable which follows a particular
distribution. In other words, the GPR and its theory (i.e., the Gaussian process) consider a
Gaussian distribution. On this basis, Equation (12) can be rewritten as follows:

f (x) = GP(µ(x), Σ(x)) (13)

In this case, the Gaussian process GP is a distribution over functions and is defined
by the mean µ(x) and covariance Σ(x) functions. The mean function reflects the expected
function (E) value at the input, and it is expressed as:

µ(x) = E( f (x)) (14)

In the GPR modeling, the covariance matrix is defined by a kernel function:

Σ(x) = κ
(
xi, xj

)
(15)

where κ(xi,xj) is the main kernel function (matrix) for i,j = 1, . . . , n. The kernel function
models the dependence between the function values at different input points. The selection
of a proper kernel function lies in assumptions such as smoothness and patterns to be ex-
pected in the predictor data. Hence, one can realize that the GPR is a parametric supervised
regressor; therefore, some unknown parameters (i.e., hyperparameters), such as the type of
kernel function and the kernel coefficients, should be determined.

The type of kernel in the GPR model can be selected from some functions, including
the squared exponential kernel (κS), rational quadratic kernel (κR), and exponential kernel
(κE). Equations (16)–(18) mathematically express these functions:

κS
(

xi, xj
)
= σ2

Sexp

−1
2

((
xi − xj

)T(xi − xj
))

λ2
S

 (16)
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κR
(
xi, xj

)
= σ2

R

1 +

((
xi − xj

)T(xi − xj
))

2ηλ2
R

−η

(17)

κE
(

xi, xj
)
= σ2

Eexp

−
((

xi − xj
)T(xi − xj

)) 1
2

λE

 (18)

where (.)T refers to the transpose operation in the mathematics. Note that the input data x
are univariate, the expression (xi − xj)T(xi − xj) is equivalent to (xi − xj)2. In these equations,
σS, σR, and σE as well as λS, λR, and λE denote the standard deviations and kernel scales of
the squared exponential, rational quadratic, and exponential kernel functions, respectively.
Furthermore, in Equation (17), η is the scale mixture parameter of the rational quadratic
function. Once the GPR model has been developed, one can predict the output data and
determine the prediction data ŷ, which is the output of the function f (x). Note that training
and test ratios equal to 80% and 20% were considered to train the GPR model and predict
the displacement data.

4.3. Supervised Vector Regression

The SVR is a branch of the well-known support vector machine (SVM) for the regres-
sion problem [56]. This regressor can represent the dependency of the input and output
data and establish the relationship between them [57]. The basis of the SVM is to trans-
form the original dataset into a higher-dimensional space by a kernel function and use
an optimization approach to identify a hyper-plane that attempts to correctly divide the
relevant dataset in the new space. For the issue of regression, the SVR follows the same
strategy by dividing the predictor data (input) into support vectors and transforming them
into high-dimensional space, establishing a function based on estimated parameters, and
solving it by an optimization algorithm.

Given the response data y and the predictor data x, the SVR intends to model a
regression expression similar to Equation (12), where the function f (x) is given by:

f (x) = wTφ(x) + b (19)

where w stands for the weight vector; b denotes a bias constant; and φ(x) is the transforming
function that maps the predictor data into the new high-dimensional space through a kernel
function. To solve Equation (19), one can write it as a convex optimization problem:

minimum 1
2‖w‖

2

subject to
{

y− wTφ(x)− b ≤ ε

wTφ(x) + b− y ≤ ε

(20)

Based on this optimization problem, the main aim of the SVR is to determine the weight
vector w and bias by selecting an appropriate kernel function along with estimating its
unknown parameters. In the SVR modeling, it is possible to exploit some kernel functions,
including the linear kernel (κL), Gaussian kernel (κG), and polynomial kernel (κP) functions,
which are expressed in Equations (22) and (23), respectively:

κL
(

xi, xj
)
= xT

i xj (21)

κG
(

xi, xj
)
= exp

(
−
∥∥xi − xj

∥∥2

s

)
(22)

κP
(

xi, xj
)
=
(

xT
i xj + 1

)q
(23)
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where s and q are the Gaussian kernel parameter of κG and the polynomial order of κP,
respectively. Moreover, each of the kernel functions in these equations is equivalent to φ(x).
Once the SVR model is established, one can predict the response data as ŷ = wTφ(x) + b.
Note that training and test ratios equal to 80% and 20% were considered to train the SVR
model and predict the displacement data.

5. Results
5.1. Dashengguan Bridge

To begin the process of correlation analysis, we initially attempted to graphically
analyze the relationship between the displacement and temperature data by observing
their scatter plots, as illustrated in Figure 7. As can be seen, there were strong linear
correlations between the displacement data of the six piers and temperature data. For
further investigation, Table 1 lists the amounts of the correlation coefficients. From the
data in this table, although all measures reached high coefficient values close to −1 and
1, it was discerned that the MIC, Pearson, and Spearman correlation coefficients could
better show the linear correlation compared to the Kendall correlation coefficient. In the
next step, the input-output supervised regression methods were used to initially model
the relationship between the displacement and temperature data and then conduct the
prediction problem. Accordingly, Figure 8 displays the LRMs fitted to the displacement
and temperature data. As can be seen, the LRMs were fitted properly to the data, implying
reliable regression modeling.
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Figure 7. Scatter plots of the displacement versus temperature data in the problem of the Dasheng-
guan Bridge: (a) Pier #4, (b) Pier #5, (c) Pier #6, (d) Pier #8, (e) Pier #9, (f) Pier #10.

Table 1. Correlation analysis between limited displacement and temperature data regarding the
Dashengguan Bridge.

Pier No. MIC
Correlation Coefficient Metrics

Pearson Spearman Kendall

4 1.00 −0.9928 −0.9931 −0.9507
5 1.00 −0.9899 −0.9896 −0.9310
6 1.00 −0.9776 −0.9822 −0.9064
8 1.00 0.9850 0.9901 0.9359
9 1.00 0.9943 0.9940 0.9507
10 1.00 0.9877 0.9876 0.9211
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Figure 8. LRMs fitted to the displacement and temperature data of the Dashengguan Bridge: (a) Pier
4, (b) Pier 5, (c) Pier 6, (d) Pier 8, (e) Pier 9, (f) Pier 10.

To develop the GPR and SVR models, one needs to determine their hyperparameters.
According to Bayesian hyperparameter optimization, Figures 9 and 10 show the outputs
of this process for the GPR and SVR models, respectively. It needs to be mentioned that
the squared exponential (κS) and linear (κL) kernel functions were optimized for all GPR
and SVR models, respectively. Once all supervised regression models were developed,
the prediction problem was carried out by feeding the test points concerning the predictor
(temperature) data into the trained model to predict the displacement samples. Accordingly,
Figures 11–13 compare the real and predicted displacements of the Dashengguan Bridge
based on the LRM, GPR, and SVR, respectively. Note that although 20% of the whole
temperature points were considered to the produce the test data, we showed the predicted
displacement samples related to 80% and 20% of the training and test points, respectively,
in order to better verify the prediction procedure. In the aforementioned figures, it can be
perceived that the predicted displacement samples were in good agreement with their real
displacement points, implying reliable predictions.
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Figure 9. Bayesian hyperparameter optimization of the kernel parameters of κS related to the GPR
models of Piers 4–6 and 8–10 of the Dashengguan Bridge: (a) σS, (b) λS.
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Figure 10. Bayesian hyperparameter optimization of the SVR models related to Piers 4–6 and 8–10 of
the Dashengguan Bridge: (a) the number of support vectors, (b) the model bias values.
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Figure 12. Real and predicted displacement data of the Dashengguan Bridge based on the GPR
models: (a) Pier 4, (b) Pier 5, (c) Pier 6, (d) Pier 8, (e) Pier 9, (f) Pier 10.
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Figure 13. Real and predicted displacement data of the Dashengguan Bridge based on the SVR
models: (a) Pier 4, (b) Pier 5, (c) Pier 6, (d) Pier 8, (e) Pier 9, (f) Pier 10.

5.2. Lupu Bridge

Using the scatter plots between the displacement and temperature data regarding
the Lupu Bridge, the correlations between these parameters were evaluated, as shown in
Figure 14. As can be seen in Figure 14b, there was a roughly linear correlation pattern
between the temperature and displacement data of the bridge span. However, it is difficult
to reach this conclusion according to the scatter plot of Figure 14a regarding the bridge
dome. This conclusion verifies the importance of numerical correlation analyses, especially
the MIC, which is suitable for both linear and nonlinear cases, instead of a graphical
approach. On this basis, Table 2 lists the correlation coefficients of the MIC, Pearson,
Spearman, and Kendall measures. As can be seen, the displacement data of the dome had
a low correlation with the temperature. Apart from the linear correlation measures, one
can observe that the MIC yielded a small correlation value, which confirms this conclusion.
This means that the other environmental and/or operational conditions most likely affected
the displacement data of the bridge dome. In contrast to the dome, one can see that the
displacement data of the main span and temperature produced the linear correlation. In
this regard, except for the Kendall correlation coefficient, the other measures verified this
conclusion by obtaining correlation coefficients close to one.
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Table 2. Correlation analysis between limited displacement and temperature data regarding the
Lupu Bridge.

Component
Correlation Coefficient Metrics

MIC Pearson Spearman Kendall

Dome 0.56 −0.4555 −0.4925 −0.3285
Span 0.90 −0.8689 −0.8483 −0.6557

To model the relationship between the displacement and temperature data and then
perform the prediction problem, the supervised regressors were trained. Figure 15 illus-
trates the LRMs fitted to the displacement and temperature data of the Lupu Bridge. The
values of R2 were also inserted in this figure to assess the goodness-of-fit of the regression
modeling. Unlike the LRM regarding the bridge dome, as shown in Figure 15a, one can
see that the LRM of the main span could reasonably model the relationship between the
displacement and temperature data. Using the fitted LRMs, Figure 16 compares the real and
predicted displacement points of the Lupu Bridge. From Figure 16a, it is clear that the real
and predicted samples were not consistent with each other, implying the poor prediction
performance of the LRM, as its low R2 value also confirms this conclusion. Nonetheless,
the prediction performance of the LRM of the bridge span in Figure 16b was roughly
reliable, indicating that temperature was the influential environmental factor affecting the
bridge span.

Remote Sens. 2023, 15, x FOR PEER REVIEW 17 of 27 
 

 

this conclusion. This means that the other environmental and/or operational conditions 
most likely affected the displacement data of the bridge dome. In contrast to the dome, 
one can see that the displacement data of the main span and temperature produced the 
linear correlation. In this regard, except for the Kendall correlation coefficient, the other 
measures verified this conclusion by obtaining correlation coefficients close to one. 

 
Figure 14. Scatter plots of the displacement and temperature data of the Lupu Bridge: (a) the dome, 
(b) the main span. 

Table 2. Correlation analysis between limited displacement and temperature data regarding the 
Lupu Bridge. 

Component 
Correlation Coefficient Metrics 

MIC Pearson Spearman Kendall 
Dome 0.56 −0.4555 −0.4925 −0.3285 
Span 0.90 −0.8689 −0.8483 −0.6557 

To model the relationship between the displacement and temperature data and then 
perform the prediction problem, the supervised regressors were trained. Figure 15 
illustrates the LRMs fitted to the displacement and temperature data of the Lupu Bridge. 
The values of R2 were also inserted in this figure to assess the goodness-of-fit of the 
regression modeling. Unlike the LRM regarding the bridge dome, as shown in Figure 15a, 
one can see that the LRM of the main span could reasonably model the relationship 
between the displacement and temperature data. Using the fitted LRMs, Figure 16 
compares the real and predicted displacement points of the Lupu Bridge. From Figure 16a, 
it is clear that the real and predicted samples were not consistent with each other, implying 
the poor prediction performance of the LRM, as its low R2 value also confirms this 
conclusion. Nonetheless, the prediction performance of the LRM of the bridge span in 
Figure 16b was roughly reliable, indicating that temperature was the influential 
environmental factor affecting the bridge span. 

 
Figure 15. LRMs fitted to the displacement and temperature data of the Lupu Bridge: (a) the dome, 
(b) the main span. 

Temperature (oC)

(a)

Temperature (oC)

(b)

Figure 15. LRMs fitted to the displacement and temperature data of the Lupu Bridge: (a) the dome,
(b) the main span.
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Figure 16. Real and predicted displacement data of the Lupu Bridge based on the LRMs: (a) the
dome, (b) the main span.

Regarding the parametric supervised regression methods, Bayesian hyperparameter
optimization was implemented to determine their unknown components. For the GPR
models, the optimum kernel function is the squared exponential kernel (κS). Accordingly,
the kernel parameters σS and λS were identical to 12.08 and 2.72 regarding the bridge
dome and 18.61 and 9.08 related to the bridge span. In addition, both SVR models are
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designed using the polynomial kernel function (κP) with the kernel parameter (q) equal to
3. For these models, the optimum number of support vectors and the model bias values
corresponded to 2 and −1.79 for the bridge dome and 38 and 11.22 at the bridge span,
respectively. Using the optimized hyperparameters, the GPR and SVR models were trained
to predict the displacement responses as shown in Figures 17 and 18. In relation to the
bridge dome, Figures 17a and 18a show that there were discrepancies between the real and
predicted displacement samples, implying poor prediction performances. In contrast, the
GPR and SVR models had better performances in predicting the displacement points of the
main span of the Lupu Bridge, as can be observed in Figures 17b and 18b, compared to the
corresponding points related to the bridge dome.
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Figure 17. Real and predicted displacement data of the Lupu Bridge based on the GPR models:
(a) the dome, (b) the main span.
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Figure 18. Real and predicted displacement data of the Lupu Bridge based on the SVR models: (a) the
dome, (b) the main span.

5.3. Rainbow Bridge

Using the extracted displacement samples from 53 SAR images of Sentinel-1A and
the temperature records, the graphical and numerical correlation analyses were performed
to understand the relationship between the displacement and temperature data of the
Rainbow Bridge. Figures 19 and 20 show the scatter plots of the displacement versus
temperature data points associated with the piers and spans, respectively. In addition,
Table 3 presents the MIC, Pearson, Spearman, and Kendall correlation coefficients of these
points. In contrast to the piers, one can realize that the displacement and temperature
data of the three spans had roughly linear correlations. The amounts of the correlation
coefficients, particularly MIC, Pearson, and Spearman correlation measures, emphasize
this conclusion. This also shows the worse performance of the Kendall correlation measure.
Regarding the outputs of the piers, one can observe that Pier 1 showed a relatively good
correlation between the displacement and temperature data. Based on the MIC, a weak
correlation was available for Pier 2. However, the other piers could not provide such
correlation patterns.
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Figure 20. Scatter plots of the displacement and temperature data of the Rainbow Bridge: (a) Span 1,
(b) Span 2, (c) Span 3.

Table 3. Correlation analysis between the limited displacement data related to the piers and spans of
the Rainbow Bridge and temperature records.

Elements MIC
Correlation Coefficient Metrics

Pearson Spearman Kendall

Pier 1 0.72 0.6081 0.6289 0.4296
Pier 2 0.61 0.4194 0.4151 0.2946
Pier 3 0.33 0.2521 0.2439 0.1625
Pier 4 0.39 0.3745 0.3612 0.2481
Span 1 0.75 −0.7140 −0.7184 −0.5326
Span 2 0.70 −0.6793 −0.7005 −0.5195
Span 3 0.74 −0.7165 −0.7281 −0.5442

Having considered the measured temperature data as the input and the extracted
displacement data as the output, the supervised regression techniques were applied to
model the relationship between the input and output datasets and then perform the
prediction process. Figures 21 and 22 illustrate the LRMs fitted to these datasets concerning
the four piers and three spans of the Rainbow Bridge, respectively. It is seen that the
LRMs could not appropriately represent the relationship between the displacement and
temperature data. For the prediction problem, Figures 23 and 24 compare the real and
predicted displacement points of the bridge piers and spans based on the LRMs. As can be
seen in Figure 23, there were differences between the real and predicted displacement points
in the piers. This means that the other variability conditions influenced the displacements
of the piers. On the other hand, one can discern in Figure 24 that there was reasonable
compatibility between the real and predicted displacement data of the three spans.
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Subsequently, the GPR and SVR models were trained using the displacement and
temperature samples. Utilizing Bayesian hyperparameter optimization, Figures 25 and 26
present the main hyperparameters of the GPR and SVR models, respectively, where the
squared exponential (κS) and polynomial (κP) kernel functions are the optimum kernel
functions for the GPR and SVR models, respectively. Note that, in Figure 25b, the kernel
parameter σS related to Piers 2 and 3 correspond to 0.0011 and 0.0052, and the kernel
parameter λS concerning Pier 4 is identical to 0.0001. Moreover, the kernel parameter q
concerning the optimized polynomial kernel function is equal to 3 at all elements. Based on
the optimized hyperparameters of the GPR models, Figures 27 and 28 compare the real and
predicted displacement samples of the four piers and three spans of the Rainbow Bridge,
respectively. The same outputs regarding the SVR models are shown in Figures 29 and 30.
From Figure 27a, one can perceive that the GPR model fitted to the displacement samples
of the first pier could not predict them properly. In Figure 27d, the predicted values are
constant, which may be related to the performance of Bayesian hyperparameter optimiza-
tion. Nevertheless, it is obvious that the GPR models fitted to the displacement data of the
second and third piers of the Rainbow Bridge have accurately predicted the real data. On
the other hand, the results of the GPR modeling related to the displacement data of the
spans, as shown in Figure 28, resemble the LRMs.
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Figure 25. Bayesian hyperparameter optimization of the kernel parameters of κS related to the GPR
models of Piers 1–4 and Spans 1–3 of the Rainbow Bridge: (a) σS, (b) λS.
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Figure 26. Bayesian hyperparameter optimization of the SVR models related to Piers 1–4 and Spans
1–3 of the Rainbow Bridge: (a) the number of support vectors, (b) the model bias values.
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In Figure 29, the SVR models could not predict the displacement data of the piers and
there are large errors. However, as Figure 30 shows, the SVR models concerning the three
spans of the Rainbow Bridge attained more reasonable results than the piers. In Figure 30,
as well as in Figures 24 and 28, one can discern that although the forms of the predicted
displacement points resemble the real ones (i.e., both the real and displacement samples
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showed seasonal variability patterns similar to temperature records), large errors were
influential. This means that the ambient temperature may have affected the displacements
of the bridge span; however, other factors such as structural damage may have caused the
difference between the real and predicted displacement data.

5.4. Discussions on Sufficiency of Environmental/Operational Sensors

The results of the correlation analyses and supervised regression modeling contain
important notes that enable us to realize the sufficiency of sensors for measuring envi-
ronmental and/or operational conditions and the possibility of the existence of structural
damage. As explained earlier, it is well known to equip long-span bridges with various
sensing and data acquisition systems to prepare rich information about structural behavior
and responses [48–50]. Although most of such systems are comprised of contact-based
sensors, this research demonstrates that it is possible to take advantage of the benefit of
more affordable sensing systems, such as spaceborne remote sensing, not only for extracting
structural responses (displacements) but also evaluating the sufficiency of contact-based
environmental/operational sensors.

Despite some poor performances in correlation analyses and the prediction problem,
especially regarding the Rainbow Bridge, it does not mean an unfavorable consequence of
this research. In contrast, it is feasible to exploit the results of such procedures to realize
the sufficiency of the temperature sensors installed in the three bridges. In other words,
when the correlation analyses indicate high linear or nonlinear correlation rates and a
regression model reaches a reliable and high prediction (regression) accuracy, it can be
justified that the temperature sensors are sufficient. Therefore, one does not need to consider
further sensors for measuring other types of environmental and/or operational factors
such as wind speed and direction via anemometers, humidity via humidity sensors, and
traffic via weight-in-motion systems. On the contrary, if the correlation analyses indicate
low linear or nonlinear correlation rates or the regression model reaches an unreliable
prediction (regression) accuracy, one can understand that the installed temperature sensors
are insufficient. Under such circumstances, it is essential to install or incorporate further
sensors for measuring other environmental and/or operational conditions. The other
important issue in this case is the possibility of damage occurring in the structure. For this
case, the implementation of early damage detection with tried-and-tested SHM methods
(e.g., vibration-based techniques) or visual inspection are necessary.

With these descriptions, Table 4 presents the final decision of the sufficiency of temper-
ature sensors installed on the Dashengguan, Lupu, and Rainbow Bridge. As the correlation
rates and prediction accuracy regarding the Dashengguan Bridge are high, one can con-
clude that the temperature sensors are sufficient for this structure. In relation to the Lupu
Bridge, the correlation and prediction results of the bridge dome have verified that the
temperature is not the key influential factor, and one needs to equip that part of the bridge
with further sensors or evaluate the probability of the existence of damage. In contrast,
the temperature sensors mounted on the bridge deck were sufficient. For Piers 1 and 4 of
the Rainbow Bridge, it is clear that the temperature sensors were not sufficient. However,
the other elements require further interpretations. In relation to Piers 2 and 3, although
the correlation measures indicated low rates, we could obtain reliable prediction results
via GPR modeling. Hence, one can deduce that the temperature sensors were sufficient at
these areas of the Rainbow Bridge. Concerning the bridge spans, the correlation measures
approximately presented high rates (>70%); however, there were considerable differences
between the real and predicted displacement points in spite of similar variability forms.
In this case, the occurrence of damage was the main probability. Hence, we used the label
“insufficient” for these areas of the Rainbow Bridge.



Remote Sens. 2023, 15, 3503 24 of 27

Table 4. The decision on the sufficiency of temperature sensors for structural response evaluation.

Bridge Name Elements
Correlation Rate Prediction

Accuracy Decision
Linear Nonlinear

Dashengguan Piers 4–6 & 8–10 High High High Sufficient

Lupu
Dome Low Low Low Insufficient

Span High High High Sufficient

Rainbow

Pier 1 Low Low Low Insufficient

Pier 2 Low Low High * Sufficient *

Pier 3 Low Low High * Sufficient *

Pier 4 Low Low Low Insufficient

Span 1 High High Low Insufficient **

Span 2 High High Low Insufficient **

Span 3 High High Low Insufficient **

Note: The expressions “High *” and “Sufficient *” are based on the prediction via the GPR. Moreover, the term
“Insufficient **” refers to the possibility of the existence of structural damage. The green color refers to the high
correlation rate, high prediction accuracy, and sufficient sensor numbers. The red color refers to the low correlation
rate, low prediction accuracy, and insufficient sensor numbers.

6. Conclusions

This paper conducted a comprehensive and practical investigation into the effects
of temperature on limited displacement data obtained from SAR images based on the
technology of remote sensing. Since the temperature variability may cause misleading
changes in the inherent physical properties of a civil structure and may also lead to thermal
loads on important structural elements, it is indispensable to evaluate temperature and
other environmental/operational variability conditions in long-term SHM, monitor struc-
tural responses under such cases, and remove variability conditions in an effort to prepare
normalized data. The first step for these issues is to determine the correlation between the
measured temperature data and extracted displacement samples. Hence, several correla-
tion coefficient measures were introduced. In order to address the limitation of the linear
relationship between the temperature and displacement data, this paper proposed the MIC
as an alternative of some well-known linear correlation coefficients. To model the temper-
ature and displacement data and then extract normalized displacement responses, three
supervised regression models developed from the LRM, GPR, and SVR were considered.
To study and demonstrate the effects of temperature and/or thermal loads, this research
considered limited long-term displacement data of three long-span bridges extracted from a
few SAR images and recorded temperature data from the contact sensors installed in these
bridges. Based on the results of this paper, the following conclusions can be summarized as:

(1) When any environmental data are available, it is necessary to perform a correlation
analysis to realize relationships between the structural responses. Based on the four
correlation analysis methods investigated in this paper, the proposed MIC method
provided more reasonable results than the other ones due to its consideration of both
the linear and nonlinear correlation patterns.

(2) In the problem of the Dashengguan Bridge, where the single measured environmental
factor (temperature) and SAR-based displacement data had a strong linear correla-
tion, Kendall’s correlation coefficient could not yield appropriate outputs as good
as the MIC, Pearson’s, and Spearman’s correlation coefficient methods. Hence, this
correlation measure can be disregarded in further applications.

(3) The supervised regression techniques could perform well when there is a high cor-
relation between the displacement and temperature data. These techniques failed
in providing accurate and reliable results when the temperature and displacement
data had a low correlation. This was most likely due to the fact that the other un-
measured environmental and/or operational conditions or even structural damage
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impacted the displacement data. Since such conditions were not incorporated into the
supervised regression models, those could not properly predict the measured (real)
displacement data.

(4) The low correlation rates and poor prediction performances mean that the environ-
mental/operational sensors (i.e., temperature sensors in this research) in a bridge
structure are not sufficient, and one needs to consider further sensors for measuring
other environmental and/or operational conditions such as humidity, wind speed
and direction, traffic, etc. Moreover, it is important to investigate the possibility of
existing any structural damage by visual inspection or tried-and-test techniques for
early damage assessment.
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