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Abstract The objective of this article is to present a new

method for identifying the damage location in a multi-story

shear building by direct model updating method. In this

regard, structural perturbation matrices should be deter-

mined that are directly defined as the discrepancy between

mass and stiffness matrices of undamaged and damaged

structures. As a result of expanding the dynamic orthogo-

nality conditions, mass and stiffness perturbation matrices

are formulated by the initial information of undamaged

structures as well as the structure’s modal parameters

before and after the occurrence of damages. These matrices

cannot easily detect the damage site. Therefore, a more

explicit determination of damage location is performed

dividing the amount of change in these matrices’ diagonals

by the physical properties of undamaged structure. This

modification facilitates the damage localization process

and yields precise and preferable results in comparison

with applying classical methods such as natural frequen-

cies, mode shapes and structural properties changes. Sub-

sequently, the applicability and effectiveness of the

proposed damage detection method are verified numeri-

cally and experimentally. For numerical verification of the

proposed methods, a six-story shear building is utilized as a

discrete system. Then, the experimental verification of

proposed methods is conducted detecting the location of

damages in a simple laboratory frame. It can be deduced

that the proposed damage localization method can reliably

detect and also localize the structural damage.

Keywords Damage localization � Shear building � Direct

model updating method � Mass perturbation matrix �
Stiffness perturbation matrix

Introduction

A great number of the structures, which were constructed

several decades ago, are still in service and some of them

have deteriorated. All over the world, many complex and

large structures play important roles in transportation sys-

tems and social services. Hence, it is of great importance

for researchers and civil engineers to monitor these struc-

ture’s health and detect any symptoms of damages in them.

Recently, a great deal of attention has been focused on

structural health monitoring and damage identification

based on vibration-based techniques. Vibration-based

method has been developed and applied to detect structural

damages based on modal analysis. According to this

method, various damage identification algorithms have

been developed for dealing with three key problems, i.e.,

detecting the presence of damages in the structure,

detecting the locations of structural damages and estimat-

ing the damages’ extent. Most of the existing methods can

be thought of as two-stage algorithms in which damage

locations are detected at first and then damage extents are

estimated (Gomes and Silva 2008). The basic idea of

vibration-based technique is that modal parameters are

functions of the physical properties such as mass, stiffness

and damping matrices of the structures. Therefore, the

variations of these physical properties will cause changes

in the modal parameters. Damage is considered to be as

changes in structural parameters that adversely affect the

structure’s performance. Hence, damage may also be

defined as any deviation in the original geometrical or
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material properties of the structures that may cause unde-

sirable stresses, displacements or vibrations in it. These

weaknesses and deviations may be due to cracks, loose

bolts, broken welds, corrosion and fatigue (Khoshnoudian

and Esfandiari 2011).

The finite element method (FEM) may also be used to

detect and locate the damaged elements through model

updating (An and Ou 2013; Jaishi and Ren 2006; Shirad-

honkar and Shrikhande 2011; Wu and Li 2006). The basic

concept of finite element model updating is that the mea-

sured and analytical modal data are unlikely to be equal

due to the presence of noise in the measurements and

model inadequacies (Lee and Eun 2009). Therefore,

incompatibility between experimental and analytical

models is solved by finite element model updating meth-

ods. An important section of model updating methods is to

apply the structure’s responses in frequency and time

domains to update or correct the structural models. The

main difficulties lie in uncertainties of FE modeling and

errors related to modal testing (Lin 1990). Uncertainties in

the FE model are caused by inaccurate physical parame-

ters, non-ideal boundary conditions and structure’s non-

linear properties. Nonetheless, application of this concept

for damage detection is categorized based on the differ-

ences between undamaged and damaged structures. It

should also be mentioned that the amounts of perturbation

characterized in two states are considered as damage lev-

els. Therefore, determination of error parameters between

undamaged and damaged structures is a major aspect in

damage detection method by finite element modal

updating.

In recent years, a great deal of attention has been

devoted by many researchers to detecting damage

according to the data obtained from vibration measure-

ment. A detailed and comprehensive overview of the

vibration-based damage detection techniques has been

presented in the literature (Doebling et al. 1998, 1996;

Salawu 1997; Yan et al. 2007). Considering all of the

levels of damage detection process, it can be stated that

the damage localization is an important and basic step in

this process. Therefore, many researchers have focused on

identifying the damage location. Initially, a number of

them attempted to localize the structural damage using

measured natural frequencies. Cawley and Adams (Caw-

ley and Adams 1979) introduced a simple method for

identifying the damage location by structural natural fre-

quencies. They indicated that the data obtained from

vibrational measurement may make a single point for

detecting the damage sites. Kim et al. (2003) presented a

frequency-based damage detection (FBDD) method for

locating the structural damage from changes of natural

frequencies. The merit of applying the change of natural

frequencies to detect damage site is its convenient

measurement and high accuracy. However, the measure-

ment of natural frequencies may not provide enough

information for damage detection to relate the changes to

a correct damage location. Therefore, other damage indi-

cators such as mode shape alterations should also be

considered in the damage localization process. In this

regard, Shi et al. (2000) proposed a sensitivity- and sta-

tistical-based method to localize structural damage by

directly using the incomplete mode shapes. They expan-

ded multiple damage location assurance criterion

(MDLAC) and used incomplete mode shape instead of

modal frequency. Roy and Ray-Chaudhuri (2013) intro-

duced a mathematical basis to show the correlation

between a structural damage and a change in the funda-

mental mode shape and its derivatives. They achieved a

perturbation approach which was able to locate the dam-

age site by changes in the fundamental mode shape.

Moreno-Garcia et al. (2014) utilized mode shape deriva-

tives, such as rotations (first derivative), curvatures (sec-

ond derivative) and, more recently, third and four

derivatives to localize damage in composite plates.

Moreover, Reddy and Swarnamani indicated the effec-

tiveness of using wavelet transform for detection and

localization of small damages. They used the rotational

mode shapes of the damaged and undamaged plate-like

structures as well as continuous wavelet transform to

attain the spatially distributed wavelet coefficients that

were able to identify the damage position on a square

plate (Reddy and Swarnamani 2013). Furthermore, model

updating method has been introduced as an applicable

technique for damage detection in dynamic systems, par-

ticularly for damage localization. Accordingly, Yang and

Chen (2009) proposed a new approach for estimating the

mass and stiffness matrices. The main objective of their

research was to determine the error in mass and stiffness

matrices by structure’s initial physical properties and

modal data. Lee and Eun (2009; Lee et al. 2011) provided

a new method for estimating the dynamic parameters by

error matrix and model updating method. The finite ele-

ment model updating technique presented in this study

improves aforementioned approaches to detect the struc-

tural damages and develops classical damage detection

methods including changes in natural frequencies, mode

shapes and physical properties of structures. Indeed,

applying fundamental concepts of model updating method

may simply lead to a more precise identification of

damage location.

The objective of this study is to locate damage in the

shear buildings by direct model updating technique and

vibrational measurement data. To attain this aim, real

modal parameters such as natural frequencies and mode

shapes are identified by two methods. For numerical

models, the general eigenvalue problem is used to simulate
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modal data. In all of the simulation formulations, the

damping matrix is considered to be proportional. There-

fore, the results of simulation method are calculated as real

data. On the other hand, measured modal data from

experimental models are usually complex data. In general,

these data are impractical for being used in vibration-based

techniques and model updating method. Thus, real modal

parameters are extracted from complex modes by some

efficient mathematical equations. The proposed approach

for damage localization is introduced based on perturbation

matrices that are defined by the difference between mass

and stiffness matrices of undamaged and damage struc-

tures. These perturbation matrices are determined by

expanding dynamic orthogonality conditions. It can be seen

that the original mass and stiffness perturbation matrices

cannot exactly detect the damage locations. Therefore,

stiffness damage indicator (DRS) and mass damage indi-

cator (DRM) are defined based on ratio of diagonal chan-

ges of perturbation matrices to diagonal values in

undamaged mass and stiffness matrices. This modification

facilitates the damage localization process and provides

more precise and preferable results in comparison with the

classical methods such as using natural frequencies, mode

shapes and structural properties changes. Consequently, a

numerical model of a six-story shear building and an

experimental model of a three-story laboratory frame are

utilized to verify the proposed method. It can be deduced

that the DRS and DRM yield simple, robust and reliable

mathematical formulations that can be applied in the

numerical and practical structure, particularly shear

buildings.

Structural modeling and identification of modal

parameters

Modal parameters are individual properties of a structure

that are related to its structural and physical properties

including mass, stiffness and damping. The measured

modal parameters may be in the form of frequency response

function (FRF) data or natural frequencies and mode

shapes. In general, modal data are obtained through either

experimental or operational modal testing (Ewins 2000; He

and Fu 2001). Although using modal analysis provides an

insight in dynamics of structures, it has got some disad-

vantages such as uncertainties, contamination by noise, and

the disability to measure the complete data. Therefore, the

most appropriate approximation in many numerical vibra-

tion-based techniques is to employ the simulation approa-

ches for identifying the modal parameters. The main

method for this simulation is to solve the generalized

eigenvalue problem (generalized eigenvalue problem) that

is a combination of the physical properties and modal data.

To simulate the modal parameters, equation of motion for a

linear, elastic and time-invariant structure that has N

degrees of freedoms (DOF) is expressed as

M €x tð Þ þ C _x tð Þ þ K x tð Þ ¼ f tð Þ ð1Þ

where M, C and K are the mass, damping and stiffness

matrices of the structure, respectively. Furthermore, f(t) is

the vector of applied forces and x(t) is the vector of

structural responses. In numerical approaches, in which

damping is assumed to be proportional, the modal char-

acteristics are identified as follows:

K � x2
i M

� �
ui ¼ 0 ð2Þ

In this expression, ui and ki are mode shapes and

eigenvalue (k = x2) of the structure, respectively. Both of

these two parameters are of the same order. In addition, N

represents the total number of structure’s DOF. Based on

complete modal parameters, Eq. (2) can be rewritten as:

KU ¼ KMU ð3Þ

where U is the matrix of mode shapes ui and K is a

diagonal matrix whose elements are x2
i
. In fact, expression

(3) is the complete form of the simulation approach for

modal identification. This expression is defined as the

generalized eigenvalue problem. Based on the above

equation, only with dynamic properties such as mass and

stiffness matrices and also considering the proportional

damping, the complete modal parameters can be achieved

as real data. In the structural dynamics, the shear buildings

are often categorized as discrete dynamic systems or

lumped-mass structures. Thus, for a discrete system of N

DOF the mass and stiffness matrices can be determined as:

M ¼

M1 0

. .
.

Mi�1

0 Mi

2

6664

3

7775
ð4Þ

K ¼

K1 þ K2ð Þ �K2 0

�K2

. .
.

Ki�1 þ Kið Þ �Ki

0 �Ki Ki

2

666664

3

777775
ð5Þ

As can be observed in Eq. (3), the modal parameters are

obtained according to the physical properties of structure.

In contrast, one of the most precious capabilities of the

above equation is estimating the mass and stiffness matri-

ces based on identified modal parameters. This is of great

importance, particularly in the process of damage detection

in experimental models. In fact, estimating the initial

properties of structures is one of the first steps of damage

detection process when using both vibration-based
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technique and model updating method. Hence, FEM pro-

vides numerous theoretical techniques for modeling dis-

crete and continuous structural systems (Rao 2011).

Moreover, these physical properties that are determined by

FEM methods can be estimated by modal data obtained

from experimental models.

Assuming that modal parameters may be real or com-

plex data, there are various direct methods that can esti-

mate initial physical properties of structures. Generally, it

is recommended to use orthogonality conditions and state

space approach for real and complex data, respectively

(Luş et al. 2003). Taking into consideration that real mode

shapes satisfy the mass normalization condition as

uT
i Mui = 1, the mass and stiffness matrices will be

determined via measured modal data as follows:

Mx ¼
XN

i¼1

uxf gi uxf gT
i

� ��1 ð6Þ

Kx ¼ Mx

XN

i¼1

xxð Þ2
i uxf gi uxf gT

i

 !

Mx ð7Þ

Where Mx and Kx are the mass and stiffness matrices of

experimental models, respectively. Moreover, ux and xx

denote the measured real mode shapes and natural fre-

quencies, respectively. It should be noted here that the

obtained mass and stiffness matrices are not always valid

for every measured modal parameter. In other words,

scaled and normalized modes are essential for utilizing

these expressions even in the case of simple structures.

Furthermore, damping plays an important role in the simu-

lation method while performing model analysis. If the damping

matrix is either symmetric or proportional, modal parameters

will be extracted as real data through solving the linear eigen-

value problem. Otherwise, modal data will be complex quan-

tities. Complex modal parameters in either experimental or

theoretical models indicate the presence of damping in the

structures, which should be considered in the simulation

method (Balmes 1997; Fuellekrug 2008; Neugebauer et al.

2010). Since complex modal data are impractical in the system

identification and damage detection processes, real modal

parameters should be extracted from complex modes. Hence,

the complex eigenvalue can be formulated as follows:

ki ¼ �nixi � jxi

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � n2

i

q
ð8Þ

where ni and xi are modal damping ratio and undamped

natural frequency, respectively. Moreover, j = H-1 is the

complex element. For negligible imaginary values of

complex modes, the undamped natural frequency and

damping ratio are determined as:

xi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

i þ b2
i

q
ð9Þ

fi ¼
�aiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

i þ b2
i

q ð10Þ

where ai is the real part of complex eigenvalue quantity,

and bi is the imaginary part of Eq. (8). As can be observed,

Eq. (9) indicates that the natural frequencies are generally

considered as the eigenvalue of undamped structures

(structures of zero damping). As a result, dynamic

responses of structures are determined as independent

modes and therefore real mode shapes can be expressed as:

ui ¼ wi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2jxi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � fi

2

qr

ð11Þ

Damage localization

Occurrence of damage in a structure alters some of its

properties including mass, stiffness, damping and also the

vibrational responses. Thus, it is viable to determine the

existence and location of damages in a structure if its

vibrational behavior is identified. In this study, damage

localization process is carried out by direct model updating

of the damaged physical properties. The direct model

updating method is generally utilized to correct and update

mass and stiffness matrices of theoretical models using

measured modal parameters. Thus, the updating process

leads to a similar dynamic behavior in theoretical and

experimental models (Mottershead and Friswell 1993;

Mottershead et al. 2011). In addition, the main merit of this

method is that it makes use of simple mathematical equa-

tions and yields accurate results. Hence, a novel method of

damage localization is presented to utilize the direct model

updating technique and provide reliable and practical

equations for this process. In this study, variances of mass

and stiffness matrices are utilized to evaluate damage

localization process. It is clear that these matrices play a

significant role in analyzing the structure’s dynamic

behavior due to structural damages. Reduction of stiffness

and increase in the mass matrix have got more effect in this

process. In fact, these changes lead to adverse dynamic

behavior and indicate that damage has occurred. According

to fundamental concepts of finite element model updating

technique, two perturbation matrices are generated that are

related to the discrepancy between mass and stiffness

matrices of undamaged and damaged structures. By using

these perturbation matrices, structural damage is readily

evaluated through some simple mathematical equations.

Damage localization by stiffness changes

In order to determine the stiffness reduction index, the

stiffness perturbation matrix should be introduced as the
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difference between stiffness of undamaged and damaged

structures as follows:

DK ¼ Kd � Ku ð12Þ

To attain this matrix, the mode shape orthogonality

condition related to the damaged structure is expressed as:

uT
d Kdud ¼ Kd ð13Þ

Where Kd and ud are eigenvalue diagonal matrix and

eigenvector (mode shape) of damaged structure, respec-

tively. Damage in a structure leads to changes in mode

shapes and natural frequencies, which can be expressed as

follows:

DU ¼
XN

i¼1

udð Þi� uuð Þi ð14Þ

DK ¼
XN

i¼1

kdð Þi� kuð Þi¼
XN

i¼1

x2
d

� �
� x2

u

� �
i

ð15Þ

In these expressions, the subscripts u and d indicate the

undamaged and damaged structures, respectively. Fur-

thermore, N is the total number of DOF. After substituting

these linear objective functions as well as Eq. (12) into Eq.

(13) it can be rewritten as:

uu þ Duð ÞT
Ku þ DKð Þ uu þ Duð Þ ¼ Kd ð16Þ

which can be expanded to yield:

uT
u Kuuu

� �
þ uT

u KuDu
� �

þ uT
u DKuu

� �
þ uT

u DKDu
� �

þ DuTKuuuð Þ þ DuTKuDuð Þ þ DuTDKuuð Þ þ DuTDKDuð Þ ¼ Kd

ð17Þ

Neglecting the higher order terms, the preceding equa-

tion reduces to:

uT
u DKuu ¼ Kd � Ku � uT

u KuDu
� �

� DuTKuuu

� �
ð18Þ

By pre- and post-multiplying the Eq. (18) by uT
u and uu,

respectively, we will have:

uuu
T
u DKuuu

T
u ¼ uu Kd � Ku � uT

u KuDu
� �

� DuTKuuu

� �� �
uT

u

ð19Þ

It is clear that the right-hand side of Eq. (19) is an

(N 9 N) matrix that pertains to the intact stiffness matrix

and modal parameters of both undamaged and damaged

structures. Therefore, a matrix called stiffness error coef-

ficient is defined for compressing the above equation as

follows:

Ck ¼ Kd � Ku � uT
u KuDu

� �
� DuTKuuu

� �
ð20Þ

Since mode shape vectors have already been normalized

by the mass matrix as uT
u Muuu ¼ I, multiplication of

undamaged mode shape matrices is equivalent to the

inverse intact mass matrix. Therefore, the expression

uuu
T
u ¼ M�1

u is substituted into Eq. (18) and the stiffness

perturbation matrix is described as follows:

DK ¼ MuuuCku
T
u Mu ð21Þ

As can be seen, direct model updating of physical

properties leads to the determination of damage index

according to stiffness reduction. It is apparent that the

proposed equation is formulated only by small amount of

available structural information such as the undamaged

mass and stiffness matrices and also modal parameters

before and after the damage. Although, Eq. (21) provides

some general information regarding changes of the stiff-

ness matrices in undamaged and damaged structures, initial

values of stiffness perturbation matrix cannot exactly

detect the damage locations. Therefore, diagonal changes

of the stiffness discrepancy matrix (DK) are utilized to find

its maximum values. This modification leads to a simpler

damage localization process in comparison with Eq. (21).

Hence, the stiffness damage localization indicator (DRS),

which is defined as diagonal values of the stiffness per-

turbation matrix, is presented as follows:

DRS ¼
XN

i¼1

Dk

ku

� �

i

ð22Þ

Where Dki and kui are the diagonal values of discrepancy

stiffness matrix DK and stiffness of undamaged structure

Ku, respectively. It is clear that the proposed method

detects damage location simply and more precisely than

Eq. (21). Indeed, this method can remove the complications

of stiffness perturbation matrix, particularly the confusion

present in its data. Therefore, dividing the changes in

diagonal values of DK by the corresponding quantities in

undamaged stiffness matrix will lead to determination of

maximum values of DRS.

Damage localization by mass changes

On the whole, the increase of mass in the structures cannot

be directly considered as structural damage. However this

change sometimes leads to alterations in the structure’s

dynamic performance. For instance, presence of excessive

masses or adding heavy masses to the structure may cause

considerable structural damages when earthquake or huge

vibrational loadings are applied to the structure. Indeed, the

seismic forces are induced in the heavy masses present at

various stories. Therefore, higher amounts of mass present

in the structure lead to higher seismic forces and it can be

noticed that heavier buildings attract larger seismic forces

and so are prone to damage. Thus, this study attempts to

probe the dynamic behavior of shear building when masses

are added to floor levels.
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As indicated in the prior section, the changes of mass were

neglected due to their low influence in comparison with

stiffness alterations. Here, the effect of mass matrix is con-

sidered for identifying the damage locations. Similar to the

previous section, the mass perturbation matrix should be

determined. This matrix can be determined via expanding the

mass orthogonal condition for damaged structure as follows:

uT
d Mdud ¼ I ð23Þ

To achieve the mass perturbation matrix, changes of

mode shapes and natural frequencies (Eqs. 14 and 15) as

well as the mass alteration (DM = Md - Mu) are substi-

tuted into Eq. (23) as:

uu þ Duð ÞT
Mu þ DMð Þ uu þ Duð Þ ¼ I ð24Þ

By expanding the above equation and neglecting its

higher order terms, the final equation for mass perturbation

matrix can be formulated as follows:

uT
u DMuu ¼ �DuTMuuu � uT

u MuDu ð25Þ

Then, the mass perturbation matrix can be multiplied by

uT
u and uuand rewritten as:

uuu
T
u DMuuu

T
u ¼ uu �DuTMuuu � uT

u MuDu
� �

uT
u ð26Þ

The right-hand side of Eq. (26) is an N 9 N matrix that

consists of the undamaged mass matrix and corresponding

modal parameters before and after occurrence of structural

damages. This equation can be described as the mass error

coefficient matrix:

Cm ¼ �DuTMuuu � uT
u MuDu ð27Þ

As discussed before, if mode shapes satisfy the mass

normalization condition, expression uuu
T
u ¼ M�1

u is

inserted into Eq. (26) and the final equation for attaining

the mass perturbation matrix can be expressed as:

DM ¼ MuuuCmuT
u Mu ð28Þ

It is clear that the formulation of Eq. (28) is similar to

the stiffness perturbation matrix. This equation entirely

explains the adverse effect of mass alterations in the

buildings. To determine the damage locations more pre-

cisely, diagonal changes of the mass discrepancy matrix

(DM) are utilized to find its maximum values, exactly

similar to pervious section. Therefore, the ratio of diagonal

values of DM to the corresponding values in the undam-

aged mass matrix can be defined as a new damage locali-

zation index as follow:

DRM ¼
XN

i¼1

Dm

mu

� �

i

ð29Þ

In this equation, DRM is a relative indicator of damage

index based on mass changes. This indicator is a vector that

its maximum value indicates the damage locations. Dmi

and mui are diagonal values of mass perturbation and intact

mass matrix, respectively.

Numerical investigation

To investigate the effectiveness of proposed damage

detection algorithm, a six-story shear building was con-

sidered as shown in Fig. 1. Formulation of discrete systems

was carried out to generate mass and stiffness matrices of

this shear building (Rao 2011). It was assumed that the

slabs are confined amongst beams and behave as rigid

body; hence, the stiffness of each story is computed sum-

ming the stiffness of columns. Furthermore, mass of each

story was calculated summing half weight of the top and

bottom walls as well as slab’s weight. After determining

structural properties, natural frequencies and mode shapes

of the shear building were computed using Eq. (3). Due to

considering the proportional damping, modal parameters

were obtained as real values which do not need any transfer

functions for being extracted from complex modes. The

initial physical properties of the shear building are pre-

sented in Table 1.

Several damage cases are considered to investigate

the effectiveness of proposed damage localization

methods. Specifications of these cases are summarized

in Table 2.

Induced damage cases change the properties of the

shear building. In practice, the identified modal fre-

quencies are more accurate than mode shapes; hence, it

is preferred to use natural frequency alterations for

investigating the structure’s dynamic behavior. Natural

frequencies of the damaged structure are presented in

Table 3.

As can be noticed, damages cause decrease in natural

frequencies and also adverse vibrational performances. As

a result of these induced damages adverse dynamic

behavior occurs in the structure. Locations of induced

damages are initially determined using the proposed DRS

and DRM methods and obtained data such as initial

physical properties and modal parameters of the structure

before and after the occurrence of damage. Figures 2, 3,

and 4 show the damage locations detected in the shear

building.

As shown in these figures, location of damaged stories

can be detected using direct model updating of physical

properties as the stiffness reduction and the mass increase.

Figures 2a, b and 3a, b illustrate the damage locations

detected by DRS. As can be observed, damage sites are

accurately identified when single or multiple damage

cases are present. In these figures, the highest peaks of

DRS diagram indicate the locations of damage. As a
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matter of fact, in the case of single damage, the tallest

column in DRS diagram points out the damaged story.

Figure 4a, b shows the mass increase in the shear building

that causes inappropriate dynamic behavior. According to

these figures, the DRM is more simply determined in

comparison with DRS due to simplicity of mass matrix

and related formulations of damage index by mass

increase. Provided that the initial data of structural mod-

eling is more precise, the model updating process will

yield preferable and more precise results in damage

localization. In other words, accurate and reliable data for

modeling the structure leads to more appropriate results in

damage detection.

Experimental evaluation

Damage in a three-story laboratory frame was investi-

gated in this part of study. This frame, which is 2.1-m

high, was constructed using three steel plates of

650 9 650 9 5 mm3 and four equal L-shaped aluminum

Fig. 1 a Six-story shear

building; b the six-story shear

building simulated as a discrete

system

Table 1 Physical properties of six-story shear building

Story

number

Story

1

Story

2

Story

3

Story

4

Story

5

Story

6

Mass (ton) 10 10 10 8 8 6

Stiffness

(ton/m)

125 125 111 95 95 83

Table 2 Damage induced in the six-story shear building

Case number Story no. Damage index

Mass (%) Stiffness (%)

1 1 – -40

2 1 – -30

6 – -20

3 3 – -30

4 3 – -10

4 – -20

5 1 50 –

6 3 25 –

5 30 –
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columns with a 30 9 30 mm cross-section. Steel plates

and columns at each story were bolted with aluminum

brackets as shown in Fig. 5. Columns’ thickness was

considered to be equal to 5 and 3 mm in undamaged and

damaged states, respectively. In order to simulate the

localized damage at different stories, each column was

made of three separate 0.7-m-long segments instead of

one long L-shaped part. These separate segments can be

easily replaced by new ones. For damage detection, the

laboratory frame was subjected to experimental modal

test in the structural dynamics laboratory. The excitation

force was applied by a force impact hammer of Brüel &

Kjær A8202 type. Each floor was equipped with a Brüel

& Kjær 4370 type accelerometer in the x-direction.

Signals from the accelerometers were analyzed to iden-

tify natural frequencies and mode shapes. Tables 4 and 5

indicate the initial modal data of undamaged frame.

Existence of damping in the structure causes the

modal parameters to be identified as complex data. As

Table 3 Natural frequencies of the six-story shear building in the

undamaged and damaged cases

Damage

case

Mode

1

Mode

2

Mode

3

Mode

4

Mode

5

Mode

6

Undamaged 0.9230 2.4558 3.9743 5.0845 6.1236 6.5575

Case 1 0.8404 2.2819 3.7944 4.9722 6.0360 6.5243

Case 2 0.8665 2.3047 3.7181 4.8031 5.9478 6.4891

Case 3 0.8826 2.4483 3.7205 4.9907 6.0065 6.3854

Case 4 0.8961 2.3830 3.8889 4.8763 6.0742 6.3450

Case 5 0.9182 2.3693 3.7182 4.8515 5.9002 6.4861

Case 6 0.8697 2.3534 3.9258 4.7985 5.8989 6.3442
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Fig. 2 Damage localization in the six-story shear building by DRS: a damage scenario 1, b damage scenario 2

1 2 3 4 5 6
0

5

10

15

20

25

Number of Story

D
R

S(
%

)

(a)

Damage case 3

1 2 3 4 5 6
0

2

4

6

8

10

12

14

16

Number of Story

D
R

S(
%

)

(b)

Damage case 4

Fig. 3 Damage localization in the six-story shear building by DRS: a damage scenario 3, b damage scenario 4
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can be seen in Tables 4 and 5, the imaginary parts of

these modal data are negligible. In the proposed

damage detection method, real modal data are required

for formulations. Therefore, Eqs. (8)–(10) are used

to extract the real parts from complex modal

parameters. Obtained results are summarized in

Tables 6 and 7.

In the proposed damage detection method, mass and

stiffness matrices of undamaged structure must be deter-

mined. Thus, initial properties of the laboratory frame are

calculated using the real measured modal data. Amounts of

mass and stiffness evaluated for different stories of the

laboratory frame are presented in Tables 8 and 9,

respectively.

It should be noted that determining the mass and stiff-

ness matrices is an inevitable and essential part in the

proposed damage detection approach. It is of great signif-

icance that incorrect estimation of the structure’s initial

physical properties leads to improper damage detection.

Thus, dynamic responses of experimental and numerical

models are compared to ensure the accuracy in estimation

of mass and stiffness matrices. This process is carried out

by comparing the amounts of experimental natural fre-

quencies with estimated ones.

Table 10 indicates that the initial physical properties are

accurately estimated since the discrepancy between

experimental and estimated natural frequencies is \3 %.

Based on the identified mass and stiffness matrices for
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Damage case 5
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Fig. 4 Damage localization in the six-story shear building by DRM: a damage scenario 5, b damage scenario 6

Fig. 5 The three-story laboratory frame used for the study

Table 4 Identified complex eigenvalues and damping ratios of the

three-story laboratory frame

Stories Complex

eigenvalues (Hz)

Complex eigenvalues

(rad/s)

Damping

ratios (%)

First 6.76 ± 0.2j 42.5077 ± 1.4502j 0.58 ± 0.25j

Second 17.55 ± 2.4j 110.1869 ± 14.9537j 0.66 ± 0.22j

Third 26.15 ± 4.5j 164.2910 ± 28.5367j 0.82 ± 0.41j
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undamaged laboratory frame, three damage cases were

considered for the modal test. It should also be mentioned

that separate modal tests were carried out via impact

hammer on the frame for each damage case. In the first

case, a 0.5-kg steel plate was stuck to second story. In the

second damage case, columns of the first story were

replaced by 30 9 30 mm L-shaped aluminum columns of

3-mm thickness. In this case, damage is introduced as a

reduction in column’s thickness and so the frame’s stiffness

is reduced. In damage case 2, in addition to the first story,

columns of the third story were also replaced by L-shaped

columns as described in the previous case. The identified

natural frequencies for all damage cases are listed in

Table 11.

In the present investigation, the values of both DRM

and DRS are experimentally determined to detect the

damage sites using the proposed direct model updating

method. Figure 6 demonstrates the location of damage in

the first damage case by DRM. In other words, the tallest

column of DRM diagram indicates that damage is

occurred in the second story due to attaching the steel

plate to this story. Moreover, as depicted in Figs. 7 and 8,

damage sites are identified in the first and third stories’

columns, since they were selected to detect locations of

induced damage. As can be seen in the first damage

scenario, the tallest column of DRS diagram shows the

identified damage site. It is clear that the first and third

stories have got higher peaks in comparison with the

undamaged story. Consequently, it can be deduced that

the proposed damage localization method is able to detect

damage in multiple damage cases without making use of

sensitivity analysis. Although, utilizing the DRM is sim-

pler than DRS, the final results of stiffness damage index

have more influence on the dynamic performance of shear

buildings. For this reason, the stiffness changes in the

third damage scenario are more remarkable than those of

the first and second damage scenario; i.e., in the third

damage case, a considerable alteration in the stiffness

components of the second story is observed in addition to

that of the first and third stories. It can be deduced that

stiffness changes have taken place in the second story due

to the presence of connections between members of the

second story and damaged stories. As a result, surveying

the structural connections of each story such as beam-

column joints in the shear buildings has a significant

influence on transmission of damage to other parts of

structures.

Table 5 Complex

eigenvectors of the three-story

laboratory frame

Stories Mode 1 Mode 2 Mode 3

First 0.0894 ± 0.0071j 0.2129 ± 0.0151j 0.6835 ± 0.0222j

Second 0.4204 ± 0.0312j 0.5613 ± 0.0761j -0.2317 ± 0.0105j

Third 0.6281 ± 0.0597j -0.4460 ± 0.0165j 0.0561 ± 0.0077j

Table 6 Real mode shapes of the three-story laboratory frame

Stories Mode 1 Mode 2 Mode 3

First 0.0896 0.2131 0.6338

Second 0.4215 0.5664 -0.2320

Third 0.6309 -0.4463 0.0566

Table 7 Real natural frequencies of the three-story laboratory frame

Mode number Mode 1 Mode 2 Mode 3

Natural frequencies 42.5387 111.2131 166.7371

Table 8 Mass values of the three-story laboratory frame

Stories Story 1 Story 2 Story 3

Mass (Kg) 1.9188 1.8108 1.6654

Table 9 Stiffness values of the three-story laboratory frame

Stories Story 1 Story 2 Story 3

Stiffness (N/m) 40,099 9,891 9,078

Table 10 Amounts of experimental and estimated natural

frequencies

Mode number Mode 1 Mode 2 Mode 3

Experimental frequencies 42.5387 111.2131 166.7371

Estimated frequencies 41.8601 110.7166 163.3627

Table 11 Natural frequencies evaluated in the three-story laboratory

frame in different damage cases

Damage case Mode 1 Mode 2 Mode 3

Case 1 40.7215 103.8334 165.1451

Case 2 41.3037 108.3116 152.7000

Case 3 39.9300 97.6946 151.6575
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Conclusion

In this study, a new proposed damage detection method is

introduced for assessing the structural damage in the shear

buildings. At the first stage of this method, location of

damaged elements is identified by a direct model updating

of physical properties which is defined as the stiffness

DRS. Subsequently, the effect of mass increase is evalu-

ated as a damage index. The proposed damage localization

method requires using mode shapes and natural frequencies.

Therefore, generalized eigenvalue problem is numerically

used assuming that the damping is proportional. In order to

assess the proposed method, a three-story laboratory frame

is tested by impact hammer modal testing. The extracted

modal data from experimental modal testing are usually

complex values. Since real modal parameters play an

important role in model updating method, real modes are

extracted from complex data. For identifying the damage

locations, mass and stiffness perturbation matrices should be

determined. These matrices are related to physical properties

of structure and are ordinarily unknown. Therefore, the

generalized and mass normalization condition for damaged

structures is expanded. As a result of expanding these

mentioned equations, the perturbation matrices are deter-

mined only by undamaged mass and stiffness matrices as

well as modal parameters before and after of damages.

Finally, the applicability and effectiveness of the proposed

damage detection method is verified both numerically and

experimentally. For numerically verifying the proposed

method, a six-story shear building is modeled as a discrete

system. Then, the experimental verification of proposed

method is conducted detecting the location of damages in a

simple laboratory frame. The results obtained from these

two verification studies indicate that the damage localization

approach can exactly identify the damage sites. It should be

mentioned that results of DRM and DRS depend on correct

determination of the structural model’s initial information.

Open Access This article is distributed under the terms of the

Creative Commons Attribution License which permits any use, dis-

tribution, and reproduction in any medium, provided the original

author(s) and the source are credited.
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Luş H, De Angelis M, Betti R, Longman R (2003) Constructing second-

order models of mechanical systems from identified state space

realizations. Part I: theoretical discussions. J Eng Mech 129(5):

477–488. doi:10.1061/(ASCE)0733-9399(2003)129:5(477)
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