
Int. J. Dynam. Control (2014) 2:509–520
DOI 10.1007/s40435-014-0071-z

Damage detection in structural systems by improved sensitivity
of modal strain energy and Tikhonov regularization method

Alireza Entezami · Hashem Shariatmadar

Received: 27 September 2013 / Revised: 18 February 2014 / Accepted: 21 February 2014 / Published online: 11 March 2014
© Springer-Verlag Berlin Heidelberg 2014

Abstract In this article, new methods for detecting damage
in structural systems are presented. These methods are cat-
egorized as damage localization and damage quantification,
respectively. Hence, direct changes of modal strain energy
are applied to identify locations of damage. Moreover, some
restraints such as incomplete measured modes and simple
assumptions in structural modeling may cause failure in the
results of damage localization. Therefore, a correlation-based
method is utilized to obviate these limitations and precisely
detect damage sites. Subsequently, an improved sensitivity
of modal strain energy is generated to determine damage
severities. To achieve appropriate results in damage quantifi-
cation, Tikhonov regularization approach is utilized instead
of classical methods such as applying penalty function and
current inverse problem techniques. Applicability and effec-
tiveness of proposed methods are numerically verified using
two practical examples consisting of a planner truss and a por-
tal frame, respectively. Eventually, numerical results indicate
that the proposed damage localization approach provides an
influential algorithm for precisely identifying damage sites.
Furthermore, obtained damage severities show that utilizing
the sensitivity of modal strain energy and also solving the
damage equation by Tikhonov regularization makes it pos-
sible to accurately determine damage extents in the case of
incomplete modal data.
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1 Introduction

Vibration-based damage identification technique has become
a popular research topic in the fields of civil, mechanical
and aerospace engineering in the last two decades. Based
on this technique, structural damages in the form of stiff-
ness reduction would alter the system’s vibrational proper-
ties i.e. modal frequencies, mode shapes and damping ratios.
Hence, many attempts have been carried out to use changes
of modal parameters for localizing as well as quantifying
structural damages. In this regard, Doebling et al. [1], Stubbs
et al. [2] and Salawu [3] and Yan et al. [4] have reviewed
previous studies in the literature regarding damage detection
process. Moreover, the majority of techniques have detected
any type of damages in dynamical systems by direct changes
in both physical properties and vibrational responses. Hence,
Yan and Golinval [5] presented a damage diagnosis tech-
nique based on changes in dynamically measured amounts
of flexibility and stiffness in structures. Yang and Sun [6] pro-
posed a new method based on the best achievable flexibility
changes in order to localize and quantify damage in dynami-
cal structures. Their damage localization approach consists of
computing Euclidean distances between the measured flex-
ibility changes and the best achievable flexibility changes.
Furthermore, a damage detection process was carried out by
Kim et al. [7] in which changes of both natural frequencies
and mode shapes were used. They utilized a methodology to
locate and estimate size of damage in structures for which
a few natural frequencies or a few mode shapes are avail-
able. Esfandiari et al. [8] proposed a novel frequency-based
technique to detect any number of localized damages that
induce stiffness reduction in a structure. Other methods that
are based on changes in the modal parameters are known as
modal strain energy methods. In this regard, Yan and Ren
[9] applied a statistic structural damage detection algorithm
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developed from closed form of element’s modal strain energy
sensitivity. Hu et al. [10] detected surface cracks in a circu-
lar hollow cylinder using ratio of modal strain energies of
the cylinder before and after occurrence of damage. Indeed,
they developed a scanning damage index by moving dam-
age indices obtained from local area throughout the struc-
ture. Shi et al. [11] used modification of modal strain energy
for localizing the damage and then proposed a new method
for quantifying damage by means of modal strain energy’s
sensitivity. Furthermore, Seyedpoor [12] developed a two-
stage method to identify the damage site and then determine
severity of multiple damage cases in structural systems. In
the first stage of this method, damage localization approach
was improved by a modal strain energy-based index which
was previously suggested by Shi and Law [13].

Moreover, sensitivity-based approach is applied in devel-
oping damage detection techniques by many researchers.
In dynamical systems, sensitivity is defined as the ratio of
changing amount of some modal parameters like natural fre-
quencies and mode shapes to the small changes in some of
model’s properties including mass or stiffness matrices [14].
Accordingly, Li et al. [15] studied various methods for deter-
mining sensitivity of element’s modal strain energy and then
presented a new sensitivity for modal strain energy according
to the effects of mass and eigenproblem components. Yan and
Ren [16] proposed first-order sensitivity formulas for element
of modal strain energy in a real symmetric undamped system
based on the algebraic eigensensitivity method. Wang et al.
[17] presented a feasibility damage detection method using
structure’s modal strain energy as a parameter employed in
correlation-based method for truss bridge structures. They
obtained sensitivity of modal strain energy from the analyt-
ical model in which this sensitivity matrix was incorporated
into the correlation objective function. It is worth mention-
ing that detecting damage by means of modal strain energy’s
sensitivity is not simple due to complexities of the energy-
based method. On the other hand, finite difference method is
utilized in most damage detection approaches to determine
the first derivative of structures’ physical properties in sen-
sitivity analysis. Hence, the obtained results include errors
caused using approximated mathematical equations. Thus,
researchers have focused on developing equations that can
overcome the aforementioned problems and reducing errors
in damage detection. One of the most appropriate methods
for obviating the vagueness is to use the minimizing tech-
niques. Consequently, this study aims at eliminating these
weaknesses by means of an improved sensitivity for modal
strain energy and an efficient minimizing equation.

In this article, improved vibrational-based techniques are
used to detect damages in the structural systems. This process
is divided to two stages that are categorized as damage local-
ization and damage quantification, respectively. In the first
stage, direct alteration of modal strain energy is developed to

identify damage sites. In the damage localization approach,
some issues can effect detection of damage locations. Thus,
a correlation of modal strain energy is introduced to over-
come limitations like measurement of incomplete modes and
simplifier assumptions in structural modeling. In the sec-
ond stage, damage severities are determined by an improved
sensitivity of modal strain energy. To achieve appropriate
results in damage quantification, Tikhonov regularization
approach is utilized rather than classical methods like penalty
function and current inverse problem techniques. In fact,
Tikhonov regularization is an inverse problem which can deal
with some ill-conditioned and complicated solutions of other
inversing techniques. The applicability and effectiveness of
proposed methods have numerically been verified using two
practical examples consisting of a planner truss and a portal
frame. Eventually, numerical results indicate that the pro-
posed damage localization approach provides an influential
algorithm for precise identification of damage sites. More-
over, obtained damage severities show that utilizing the sensi-
tivity of modal strain energy and solution of damage equation
by Tikhonov regularization leads to accurate determination
of damage extents.

2 Theory

2.1 Modal strain energy

Free vibration equations for a linear undamped discrete sys-
tem of n degrees of freedom can be given by

Kϕi = λi Mϕi , i = 1, 2, ..., n (1)

where M and K are mass and stiffness matrices, respec-
tively. Furthermore, λi and ϕi are the i th eigenvalue (square
of natural frequency, λi = ω2

i ) and eigenvector (mode
shape), respectively. Moreover, n is total number of struc-
ture’s degrees of freedom. To attain appropriate results of
modal strain energy, mode shapes should be normalized with
respect to mass matrix. Generally, mass matrix is a non-
singular matrix; thus normalization of the i th mode shape
can be expressed as:

ϕT
i Mϕi = 1 (2)

Since mode shape vectors are equivalent to nodal displace-
ments of a vibrating structure, strain energy is stored in each
element of the structure [12]. The strain energy of a structure
due to mode shape vector are usually referred to as modal
strain energy (MSE) and can be considered as a valuable
parameter for damage identification. Hence, global modal
strain energy for the i th mode of the structure can be defined
as:

MSE = 1

2
ϕT

i Kϕi (3)
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It is assumed that global stiffness matrix K is assembled by
j individual element stiffness matrices k j . Hence, if ne is
the total number of elements in the structural system, the j th
element’s MSE for the i th mode can be given by:

M SEi j = 1

2

ne∑

j=1

ϕT
i k jϕi (4)

2.2 Damage localization by a new modal strain energy
method

Modal strain energy is determined by combining stiffness of
structure’s members and mode shapes based on Eqs. (3) or
(4). When structural damage occurs, both modal data and
physical properties of the structure will be changed. As a
result of change in modal data, modal strain energy alters and
these changes can be utilized to localize damages. Accord-
ingly, a new damage localization approach is proposed using
changes of MSE in the structural system. As Eq. (4) does not
provide comprehensive and complete information regarding
damage sites, normalized form of MSE is used. This normal-
ized form can be expressed as:

ηM SE =
ne∑

j=1

∣∣∣∣∣
ϕT

i k jϕi∑ne
j=1 ϕT

i k jϕi

∣∣∣∣∣ (5)

where ηM SE represents the normalized modal strain energy
of the j th element in the structure’s i th mode of vibration. In
practice, obtaining all of modal data is usually impossible.
Therefore, normalized MSE for only m identified modes can
be rewritten as:

ξM SE = 1

m

m∑

i=1

ηM SE (6)

where ξM SE is defined as the finite normalized modal strain
energy for undamaged structures. Direct changes of the finite
normalized MSE can be applied to detect damage locations.
In this regard, modal strain energy of damaged structure
should be determined by replacing the damaged mode shapes
into Eq. (4). It is clear that the damaged normalized modal
strain energy is similar to the typical equation in the normal-
ized MSE for the undamaged structure. Hence, finite normal-
ized modal strain energy for damaged structure ξ̄M SE can be
expressed as:

ξ̄M SE = 1

m

m∑

i=1

η̄M SE (7)

where η̄M SE similarly defines as the normalized modal strain
energy of j th element in the i th modes for damaged structure:

η̄M SE =
ne∑

j=1

∣∣∣∣∣
ϕ̄T

i k j ϕ̄i∑ne
j=1 ϕ̄T

i k j ϕ̄i

∣∣∣∣∣ (8)

In the above equation, ϕ̄ denotes the mode shape of dam-
aged structure. Occurrence of damage causes an alteration
in the MSE and consequently the efficient parameter ηM SE

changes for m modes. As a result, modal strain energy index
( β) is defined to directly identify the location of damages as
follows:

β = ξ̄M SE − ξM SE

ξM SE
(9)

It should be noted that it is possible to determine damage
locations by Eq. (9) and using modal strain energy alter-
ations. However, obtained results of damage localization may
fail due to some reasons including simple assumptions made
while modeling the structure, existence of both incomplete
modes and contaminated modal data. On the other hand, Eq.
(9) is a relative indicator that determines the relation of modal
strain energy between undamaged and damaged structures.
Thus, the mentioned weaknesses in the damage localization
process have more effects on results when MSE index is
utilized. Therefore, a correlation-based approach is applied
to reduce the effect of these limitations. In other words,
determining the level of correlation between undamaged
and damaged modal strain energy will provide an efficient
tool for locating damages. This correlation method is usu-
ally called damage localization assurance criterion [18,19].
Hence, Eq. (9) can be improved by modal strain energy dam-
age localization indicator (MSEDLI) as follows:

M SE DL I =
∣∣∣∣∣

(
βT · �ξM SE

)2

(
βT · β

) (
�ξ T

M SE · �ξM SE
)
∣∣∣∣∣ (10)

where �ξM SE is discrepancy between the finite normalized
modal strain energy in the undamaged and damaged struc-
tures that can be described as �ξM SE = ξ̄M SE − ξM SE . This
correlation method utilizes enhanced multipliers to increase
the accuracy of damage localization results and reduce any
weaknesses in this process. Indeed, Eq. (10) can detect any
type of damage cases by using direct changes of modal strain
energy. Accordingly, the MSEDLI in the damaged elements
is equal or close to one. In contrast, the MSEDLI indicator is
equal to zero for undamaged elements. As a result of compu-
tational errors, the MSEDLI is not occasionally equal to one
or zero for damaged and undamaged elements, respectively.
However, the proposed damage localization approach is in
most cases able to determine locations of damages precisely.

2.3 Damage quantification using improved sensitivity of
modal strain energy

Sensitivity analysis describes rates of changes in vibrational
response parameters such as natural frequencies and mode
shapes with small alterations in some of the physical proper-
ties consisting of individual mass and stiffness matrices [14].
Therefore, derivative of structures’ dynamic responses with
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respect to physical properties is usually described as sensi-
tivity analysis in dynamical structures. As discussed before,
modal strain energy has been defined by mode shapes and
stiffness components. Hence, it is possible to introduce a
sensitivity of MSE by first-order derivative of Eq. (4) as fol-
lows

∂ M SEi j

∂α
=

ne∑

j=1

(
ϕT

i k j
∂ϕi

∂α
+ 1

2
ϕT

i
∂k j

∂α
ϕi

)
(11)

As sensitivity of mode shape overcomes the singular prob-
lem, the most important ambiguousness of Eq. (11) is diffi-
culty in determining the first derivative of mode shape with
respect to damage variable α [15]. To deal with this difficulty,
an efficient sensitivity modal strain energy is utilized which
was previously proposed by Yan and Ren [16]. In fact, they
derived a compact analytical expression for sensitivity of ele-
ment’s MSE based on the algebraic method. In this method,
sensitivity of modal strain energy is computed as follows:

∂ M SEi

∂α
= ϕT

i K ∗ϕi (12)

where

K ∗ = [
k j 0

]
.

[
K − λi M −Mϕi

−ϕT
i M 0

]−1

.

[
λi

∂ M
∂α

− ∂K
∂α

1
2ϕT

i
∂ M
∂α

]

+ 1

2

∂k j

∂α
(13)

As noted above, this method is a straightforward approach
for computing the sensitivity of MSE and does not require
using derivative of mode shapes. Indeed, this technique has
omitted the mode shape sensitivity and has applied direct
derivatives of physical properties of undamaged structures.
Hence, first derivatives of the mass and stiffness matrices are
simply calculated using finite difference method as follows:

∂K

∂α
= K (α0 + �α) − K (α0)

�α
(14)

∂ M

∂α
= M (α0 + �α) − M (α0)

�α
(15)

This technology has become a very popular method and has
been implemented in many common finite element programs.
In this study, it is assumed that damage is directly related to
a decrease in the stiffness matrix and the effect of changes in
mass can be neglected. Therefore, derivative of mass matrix
in Eq. (13) is omitted to introduce improved sensitivity of
modal strain energy for damage quantification. Neglecting
the mass matrix modification, Eq. (13) can be rewritten as:

K ∗ = [
k j 0

]
.

[
K − λi M −Mϕi

−ϕT
i M 0

]−1

.

[− ∂K
∂α

0

]
+ 1

2

∂k j

∂α

(16)

Once Eq. (16) is generated, the sensitivity of MSE can be
determined with respect to Eq. (12). Thus, the improved sen-
sitivity of modal strain energy is presented as:

SM SE = ϕT
i

×
(

[
k j 0

]
.

[
K − λi M −Mϕi

−ϕT
i M 0

]−1

.

[ − ∂K
∂α

0

]
+ 1

2

∂k j

∂α

)
ϕi

(17)

Having determined modal strain energy’s sensitivity, differ-
ent methods can be utilized to compute damage severities.
One of these methods is Taylor series which can be defined
as follows:

xk+1 = xk + ∂ f

∂α
�α + ∂2 f

∂α2 �α2 + · · · + ∂k f

∂αk
�αk (18)

For damage detection process, Taylor series is truncated to
produce a unique expression by neglecting higher order terms
in Eq. (18) which can be described as:

xk+1 = xk + ∂ f

∂α
�α (19)

Equation (19) can be used in many vibrational methods. Con-
sider x and f are the vibrational response of structure and
the function of dynamic behavior, respectively. Therefore, a
damage equation is defined as follows:

�x = ∂ f

∂α
�α (20)

where �x is an error function between the vibrational
responses in the k and k + 1 states. Generally, this equa-
tion is known as penalty function (damage equation) that is
widely applied in the both system identification and dam-
age detection techniques. On the other hand, Eq. (20) can be
written in more detail for dynamical systems as:

�ϕ = S · �α (21)

where �ϕ represents the discrepancy between modal para-
meters of both undamaged and damaged structures. Further-
more, S is the first-order derivative (sensitivity) of dynami-
cal systems components and �α is also defined as unknown
quantity which must be determined. In this regard, a currently
used minimization method like Least-square is utilized to
solve penalty function as follows:

min ‖S · �α − �ϕ‖ (22)

As mentioned, Eq. (21) defined as damage equation or
penalty function. The damage severities are determined by
minimizing this equation. Hence, Eq. (22) is traditionally
applied to minimize damage equation. With this simple mini-
mization algorithm, damage quantification process may yield
an unacceptable result. Indeed, the least square method is an
approximate technique due to neglecting higher order terms.
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Moreover, as the equation of penalty function is often ill-
conditioned and established by some assumptions; direct
least-squares solution cannot provide appropriate damage
severities if modal parameters are incomplete or when are
contaminated by noise. To avoid these problems, regulariza-
tion is introduced. The some most widely used regulariza-
tion methods are Tikhonov regularization, truncated singular
value decomposition (SVD), truncated generalized SVD and
so on [20–23]. Among these techniques, Tikhonov regular-
ization method is the most currently used one. Indeed, this
method improves the conditions of the linear problem, which
enables a direct numerical solution. Therefore, in the present
study, Tikhonov method is adopted to redefine the linearized
least-squares problem as minimization of Tikhonov objective
function as follows:

J (α + �α) = ‖SM SE · �α − �ϕ‖ + γ ‖�α‖ (23)

where �α and γ are damage severity and regularization para-
meter, respectively. Furthermore, SM SE is the improved sen-
sitivity of modal strain energy that has been formulated based
on Eq. (17) and using undamaged structure’s information.
In fact, the Tikhonov objective function is formulated by
adding an additional norm to the traditional least-square min-
imization technique. This added norm is known as solution
norm that is adjusted by a regularization value. For exam-
ple, when γ = 0, minimizing Eq. (23) changes to the least
squares estimates. For γ = 1, minimizing the Tikhonov
objective function yields the Bayesian estimates. For arbi-
trary γ > 0, minimizing the objective function yields the
Tikhonov-regularized technique with the regularization para-
meter. Hence, the regularized solution of Eq. (23) depends
on the regularization parameter γ , which controls the weight
given to the solution norm �α with respect to residual norm
‖ SM SE .�α − �ϕ ‖. This parameter should be estimated in
order to obtain meaningful amount for unknown quantities
or damage severities when regularization methods are uti-
lized. Accordingly, L-curve method (LCM) and generalized
cross validation (GCV) approach are two popular methods
to determine the regularization parameter [24–27]. LCM is a
log-log plot of the solution norm ‖ �α ‖ versus the residual
norm ‖ SM SE .�α − �ϕ ‖ [28]. Indeed, the curvature of the
L-curve is a function of the regularization parameter which
is obtained from the first-and-second order derivatives of the
residual norm [29,30]. The L-curve basically consists of two
parts including a flat part where the regularization error domi-
nates and a steep part where the perturbation error dominates.
Consequently, the optimal regularization parameter is deter-
mined somewhere near the L-curve’s corner. In contrast, the
generalized cross-validation method offers a way to estimate
proper value of the regularization parameter. In fact, GCV
is utilized to maximize the predictability of the regularized
solution by appropriate setting of the regularization parame-
ter. In this method, the optimal regularization parameter is

calculated as the one that attains the minimal average pre-
diction error for all omitted data points [31–33]. Comparing
the capability of two methods, it can be concluded that GCV
is a very robust method and provides more proper results
in comparison with the L-curve approach. Generally, LCM
requires the calculation of the first and second derivatives of
the residual norm and the solution norm that involves con-
siderable computational amounts with occasional errors in
results. Furthermore, this approach is based on an intuitive
heuristic and seeks to balance the two error components via
inspection (manually or automated) of the L-curve. Hence, in
this study; the generalized cross-validation method is utilized
to determine the regularization parameter in the each damage
state. Having estimated the regularization parameter, damage
variable �α is obtained by minimizing the Tikhonov regu-
larization objective function from the following equation:
[

S
γ I

]
�α =

[
�ϕ

0

]
(24)

It should be noted that if γ is extremely small, then the objec-
tive function of Tikhonov regularization will be too close
to the original ill-conditioned problem. In addition, if γ is
extremely large, then the Eq. (23) will greatly deviate from
original problem. Consequently, final regularized solution
after minimizing the objective function of Tikhonov regular-
ization method can be expressed as:

�α =
(

ST S + γ I
)−1

ST �ϕ (25)

According to Eq. (25), damage severity can only be deter-
mined by calculating sensitivity of modal strain energy in
undamaged structure and also difference between modal
parameters of the structure before and after occurrence of
damage. Furthermore, applying the regularization parame-
ter is a basic difference between the proposed method and
traditional linear least square technique. This parameter
increases the accuracy of damage quantification results and
also decreases computational errors and some weaknesses
such as errors in structural modeling, existence of incomplete
modes and contaminated modal data in this process. On the
other hand, unlike classical methods, it is not necessary to
determine sensitivity of damaged structures to obtain dam-
age severities due to utilize Tikhonov regularization method.
Furthermore, it can be deduced that the proposed damage
quantification approach is potentially able to compute dam-
age severities in the case of incomplete modal data.

2.4 Noisy measurement

In experimental modal tests, there may be some deviations in
the results due to the existence of noise in measurements. In
the numerical examples, this noise is simulated by adding a
series of pseudo-random numbers to the theoretically calcu-
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Fig. 1 Planner truss considered
to validate the proposed damage
detection methods

lated frequencies and mode shapes [34]. In other words, due
to the complexity of the measurement process, an amount
of noise may be inserted in measured data which contami-
nates the modal parameters. Thus, in order to investigate the
effect of noise on the results obtained by proposed damage
detection method a random noise is considered as follows:

ϕ∗
i = ϕi (1 + θr ) (26)

where ϕ* and ϕ are the eigenvector (mode shape) compo-
nents of the i th mode with and without noise, respectively.
Moreover, θr is a random number. In this study, two values
equal to 1 and 5 % are applied to mode shapes and natural
frequencies as proportional random noises. Accordingly, the
damage detection algorithm will be repeated by a series of
error-contaminated data created by Eq. (26).

3 Application

3.1 A planner truss

To illustrate characteristics of the proposed damage detection
algorithms, a two-dimensional truss is considered as shown
Fig. 1. Basic parameters of the structure’s material are Young
modulus E = 200 GPa and density ρ = 7850 kg/m3. All
of truss’s members are modeled as L-shaped double equal
angles of 100 mm width and 5 mm thickness. Each node
of the truss has two degrees of freedom. In this example,
the first three vibrating modes of the structure are used to
detect damages. In the following, two types of random noises
including 1 and 5 % are imposed on the both extracted mode
shapes and natural frequencies, respectively.

This 2-D truss is a continuous dynamical system and the
mass and stiffness matrices can be determined by basic con-
cepts of finite element method [35]. After calculating phys-
ical properties of undamaged truss, generalized eigenvalue
problem is used to identify modal data. It is assumed that
proportional damping dominates structure’s behavior and so
modal parameters are extracted as real data. Subsequently,
four damage cases are considered to investigate effective-
ness of proposed methods for damage detection. Accord-
ingly, in the first damage case, stiffness of elements 2 and
14 are reduced by 15 %. In damage case number two, the
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Fig. 2 Damage localization in the planner truss by MSEDLI (damage
case 1)

stiffness of elements 6, 9 and 12 are decreased by 20, 25 and
30 %, respectively. In damage case number three, stiffness
of elements 3, 8 and 15 are reduced by 10, 15 and 20 %,
respectively. Finally, in the fourth damage case, stiffness
of element 10 is decreased by 20 %. Induced damage cases
change the properties of the planner truss and so its vibra-
tional responses. Initially the modal strain energy indices
of damaged and undamaged structures are generated based
on Eqs. (6) and (7) to localize damages. Next, locations of
induced damages are probed by proposed damage localiza-
tion coefficient index. Therefore, damage locations that were
induced in the planner truss can be indicated as follows:

As shown in Figs. 2, 3, 4 and 5 induced damages in the
planner truss are exactly identified by the MSEDLI indicator.
These figures demonstrate that the proposed method for dam-
age localization is significantly able to locate single and mul-
tiple damages cases even in the cases of incomplete modes
and the existence of contaminated modal data. Moreover, it
can be concluded that results obtained from correlation-based
method has preferable performance comparing to calculation
of direct changes of the modal strain energy using Eq. (8).
Furthermore, Figs. 2, 3, 4 and 5 illustrate the effect of noises
in the MSEDLI diagrams. These errors cause some pertur-
bations in the final results of damage localization, particu-
larly in the undamaged elements. Although, computational
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Fig. 3 Damage localization in the planner truss by MSEDLI (damage
case 2)
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Fig. 4 Damage localization in the planner truss by MSEDLI (damage
case 3)
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Fig. 5 Damage localization in the planner truss by MSEDLI (damage
case 4)
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Fig. 6 Damage quantification in the planner truss (damage case 1)

errors in the MSEDLI method have been estimated between
10 and 18 %, the locations of damages have been identified
precisely. Therefore, it can be concluded that the proposed
damage localization approach has high capability to detect
any type of damage site when incomplete and contaminated
modal data are present.

After precise localization of structural damages, their
severities are determined using improved sensitivity of modal
strain energy. Next, this sensitivity matrix is utilized in the
objective function that is related to Tikhonov regularization
technique. In the each damage case, the regularization para-
meter is calculated by GCV method based on initial informa-
tion of damage detection process such as sensitivity of physi-
cal properties and modal parameters. Final results of damage
quantification are calculated using Eq. (25). This process is
a complicated mathematical process that requires too many
computational efforts for attaining accurate results in dam-
age quantification. Thus, obtained results are confirmed only
when the difference between induced and predicated dam-
ages is negligible. Figures 6, 7, 8 and 9 illustrate amounts of
induced and damage severities in the planner truss as well as
three levels of noise effects.

As shown in the above figures, severities of induced dam-
ages are calculated with a good precision, even when the
noisy data pollute the modal parameters. In other words,
obtained numerical results show that in cases of multiple
damages and despite incompleteness of measured modes,
amount of computational error is less than 5 % in the noise-
free condition. On the other hand, this error is estimated
between 11 and 18 % when 1 and 5 % random noises contam-
inate the modal parameters, respectively. Indeed, these errors
are acceptable quantities and indicate that the proposed dam-
age quantification method can provide reliable and efficient
results when incomplete and contaminated modal parameters
are available. Moreover, there are amounts of damage sever-
ities predicted in undamaged members of the truss. This may
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Fig. 7 Damage quantification in the planner truss (damage case 2)
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Fig. 8 Damage quantification in the planner truss (damage case 3)
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Fig. 9 Damage quantification in the planner truss (damage case 4)

be caused by complexity in calculation of sensitivity matrix,
existence of noisy data and also modal data’s being incom-
plete. However, as will be shown later, this error is negligible
and does not have any significant effect on damage quantifi-
cation algorithm.

Fig. 10 Portal plane frame considered to validate the proposed damage
detection methods

3.2 A portal frame

In this section, a one-story portal frame is utilized to investi-
gate the effectiveness of proposed damage detection methods
as shown in Fig. 10. Corresponding model of the frame is con-
structed according to fundamental concepts of finite element
method by using two-node beam elements. Hence, number
of nodes and elements of the portal frame are 21 and 22,
respectively. Subsequently, modal analysis is carried out to
identify the structure’s modal parameters. It is assumed that
all portal frame’s members have rectangular cross sectional
of h = 0.2 m height and b = 0.15 m width. Furthermore, the
frame’s length and height are B = 1.2 m and H = 1.6 m,
respectively. Properties considered for the frame’s material
are Young Modulus (E) 2.5 × 1010 N/m2 and density 2,500
kg/m3.

Here, four damage cases are considered to explore capabil-
ities of proposed methods for detecting occurred damages in
the portal frame. Hence, in the first damage case, stiffness of
element 3 is decreased by 20 %. This case is near to column-
foundation joint that is a significant part of columns, par-
ticularly in the reinforced concrete structures. In the second
damage case, stiffness of elements 6, 10 and 14 are reduced
by 15, 20 and 20 %, respectively. Damages in three different
parts of frame’s column comprising of two mid-span points
and a point close to beam-column joint are assessed in this
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Fig. 11 Damage localization in the portal frame by MSEDLI (damage
case 1)
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Fig. 12 Damage localization in the portal frame by MSEDLI (damage
case 2)

damage case. In the third damage case, importance of the
beam-column connection is evaluated. Thus, stiffness of ele-
ment 15 and 22 are decreased by 30 %. Finally, in the damage
case number four, stiffness of element 18 and 19 reduced by
10 and 15 %, respectively. Damage occurred at the mid-span
of a portal frame’s beam is assessed in this case.

Similarly to previous section, introduced damages can be
localized by correlation of modal strain energy. It should be
mentioned that only the frame’s first three modes of vibration
are utilized to create incomplete condition for modal iden-
tification. Subsequently, the both undamaged and damaged
modal parameters are contaminated by two types of random
noises containing 1 and 5 %, respectively. Thus, Figs. 11, 12,
13 and 14 illustrate locations of imposed damages in different
damage cases.

It is clear from the above diagrams that damage sites are
precisely detected when both incomplete and contaminated
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Fig. 13 Damage localization in the portal frame by MSEDLI (damage
case 3)
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Fig. 14 Damage localization in the portal frame by MSEDLI (damage
case 4)

modal data are present. Hence, Figs. 11, 12, 13 and 14 illus-
trate that the highest peaks (points) of MSEDLI diagrams
detect the damage sites precisely. Moreover, the computa-
tional errors in the damaged elements are approximately less
than 8, 12 and 16 % for all types of noisy data including noise-
free data, 1 and 5 % random noises, respectively. Although,
the noisy data can corrupt the MSEDLI diagrams, the results
of damage localization have appropriately been detected by
correlation of modal strain energy. It should be noticed that
the modal strain energy is calculated by only the first three
portal frame’s modes of vibration. Thus, correct estimation
of the initial properties of the structure particularly the stiff-
ness matrix may be the reason for theses accurate results. In
other words, damage localization process using modal strain
energy directly depends on precise determination of struc-
ture’s stiffness matrix. Therefore, it is of great significance
to provide proper initial information regarding physical prop-
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Fig. 15 Damage quantification in the portal frame (damage case 1)
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Fig. 16 Damage quantification in the portal frame (damage case 2)

erties of the structure for detecting its future damages. Fur-
thermore, in practice, estimation of stiffness matrix is gener-
ally carried out by measured modal parameters. Hence, pro-
vided that real modal data of the structure are identified, its
mass and stiffness matrices will be estimated by an accept-
able precision [36–39]. After damage localization process,
damage quantities are determined using improved sensitivity
matrix of undamaged portal frame and Tikhonov regulariza-
tion approach. As a result, Figs. 15, 16, 17 and 18 indicate
damage severities induced in the frame in different damage
cases as well as three levels of noise effects.

Comparing the imposed damage cases and predicted dam-
ages, it is clear that the proposed method for damage quan-
tification has impressive performance in estimating local
structural damage severities. Indeed, negligible amounts of
error in predicting damages indicate effectiveness of pro-
posed method. Moreover, it can be observed that damages
in the portal frame are precisely detected particularly in sig-
nificant members like column, beam and connections. How-
ever, it should be mentioned that obtained damage in the
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Fig. 17 Damage quantification in the portal frame (damage case 3)
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Fig. 18 Damage quantification in the portal frame (damage case 4)

beam–column joints has more influence on dynamic behav-
ior of the structure in comparison with other members of the
frame. Owing to the fact that stability of columns is of greatest
importance, correct estimation of damages in these members
is an indication of proposed method’s effectiveness.

4 Conclusion

In this paper, location and severity of damage in struc-
tural systems is investigated by improved vibrational-based
techniques. Accordingly, a correlation between modal strain
energy of undamaged and damaged structures is presented to
precisely identify structural damage locations in the cases of
incomplete and contaminated modal data. This process obvi-
ates some of the weaknesses in direct changes of modal strain
energy which were proposed by other researchers. For dam-
age quantification, an improved sensitivity of modal strain
energy is generated to be applied in damage equation as
penalty function. This function is formulated by truncated
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Taylor series. Subsequently, a capable minimizing process
for damage equation is used instead of employing current
inverse problem techniques. Hence, Tikhonov regularization
method is utilized and an objective function related to damage
equation is minimized to determine damage severities. It is
shown that the proposed method is preferable and can provide
more reliable and accurate results in comparison with other
classical techniques. In order to assess the performance of
proposed methods, two practical systems including a planner
truss and a portal frame are considered to detect the induced
damage cases. The numerical results demonstrate that cor-
relation of modal strain energy and applying the Tikhonov
regularization can provide an efficient tool for proper iden-
tification of multiple damages in structural systems when
incomplete modes are present and modal data are contami-
nated by random noise.
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