114 research outputs found

    Haiku

    Get PDF

    Sunset on a Plane

    Get PDF

    Unnecessary Distractions

    Get PDF

    Enabling research into the tumour microenvironment: Novel Photonics Assays for Cancer Research

    Get PDF
    Physics and engineering principles have long been applied to the development of instrumentation and assays that have significantly advanced biological research. In particular, photonics based instruments and assays have proven to be powerful tools that enable researchers to investigate biological processes in vivo. The research described in this thesis covers a range of photonics based instruments and assays that expand the capabilities researchers have to investigate challenging biological problems. These advances give researchers new tools for directly visualising dynamic biological events in three ways: 1) How to look: novel microscope instrumentation; 2) What to look at: Novel imaging based assays to dissect the tumour microenvironment; and 3) Where to look: Novel surgical protocols to enable ultra-high-resolution optical imaging in living animals (intravital imaging). Application of these assays and instruments to the challenging problem of cancer metastasis has led to a new understanding of the process of intravasation and haematogenous dissemination, paving the way to new clinical diagnostics and therapies

    Visualization of Actin Polymerization in Invasive Structures of Macrophages and Carcinoma Cells Using Photoconvertible β-Actin – Dendra2 Fusion Proteins

    Get PDF
    Actin polymerization controls a range of cellular processes, from intracellular trafficking to cell motility and invasion. Generation and elongation of free barbed ends defines the regions of actively polymerizing actin in cells and, consequently, is of importance in the understanding of the mechanisms through which actin dynamics are regulated. Herein we present a method that does not involve cell permeabilization and provides direct visualization of growing barbed ends using photoswitchable β-actin - Dendra2 constructs expressed in murine macrophage and rat mammary adenocarcinoma cell lines. The method exploits the ability of photoconverted (red) G-actin species to become incorporated into pre-existing (green) actin filaments, visualized in two distinct wavelengths using TIRF microscopy. In growing actin filaments, photoconverted (red) monomers are added to the barbed end while only green monomers are recycled from the pointed end. We demonstrate that incorporation of actin into intact podosomes of macrophages occurs constitutively and is amenable to inhibition by cytochalasin D indicating barbed end incorporation. Additionally, actin polymerization does not occur in quiescent invadopodial precursors of carcinoma cells suggesting that the filaments are capped and following epidermal growth factor stimulation actin incorporation occurs in a single but extended peak. Finally, we show that Dendra2 fused to either the N- or the C-terminus of β-actin profoundly affects its localization and incorporation in distinct F-actin structures in carcinoma cells, thus influencing the ability of monomers to be photoconverted. These data support the use of photoswitchable actin-Dendra2 constructs as powerful tools in the visualization of free barbed ends in living cells

    A unidirectional transition from migratory to perivascular macrophage is required for tumor cell intravasation

    Get PDF
    Summary: Tumor-associated macrophages (TAMs) are critical for tumor metastasis. Two TAM subsets support cancer cell intravasation: migratory macrophages guide cancer cells toward blood vessels, where sessile perivascular macrophages assist their entry into the blood. However, little is known about the inter-relationship between these functionally distinct TAMs or their possible inter-conversion. We show that motile, streaming TAMs are newly arrived monocytes, recruited via CCR2 signaling, that then differentiate into the sessile perivascular macrophages. This unidirectional process is regulated by CXCL12 and CXCR4. Cancer cells induce TGF-β-dependent upregulation of CXCR4 in monocytes, while CXCL12 expressed by perivascular fibroblasts attracts these motile TAMs toward the blood vessels, bringing motile cancer cells with them. Once on the blood vessel, the migratory TAMs differentiate into perivascular macrophages, promoting vascular leakiness and intravasation. : Tumor-associated macrophages (TAMs) are essential for metastasis. Arwert et al. show that, following extravasation, monocytes initially become motile TAMs. Tumor-derived TGF-β then induces CXCR4 on TAMs, stimulating them to migrate toward CXCL12-expressing perivascular fibroblasts. Once adjacent to blood vessels, TAMs differentiate into metastasis-assisting perivascular TAMs. Keywords: tumor associated macrophages, TAMs, TGF beta, breast cancer, metastasis, CXCR4, CCR2, TMEM, Men

    Interleukin 4 Controls the Pro-Tumoral Role of Macrophages in Mammary Cancer Pulmonary Metastasis in Mice

    Get PDF
    SIMPLE SUMMARY: Metastasis is the main cause of death from breast cancer. In mouse models of breast cancer lung metastasis, macrophages enhance metastasis by promoting tumor cell seeding and persistent growth. Here, we show that interleukin-4 (IL4) is required for this process as IL4 receptor (IL4rα)-null mice develop fewer and smaller lung metastases. This deficiency is partially rescued by adoptive transfer of wild-type monocytes. IL4 signaling in macrophages upregulates the expression of the chemokine receptor CXCR2, necessary for IL4-mediated tumor cell extravasation in vitro. In addition, expression of several other genes already causally associated with lung metastasis including Ccl2, Csf1, Ccr1, Hgf and Flt1 are upregulated in macrophages. High-resolution intravital imaging at the time of metastatic seeding showed reduced physical interaction between tumor cells and IL4rα-deficient macrophages, showing the dependence on IL4. We conclude that IL4 signaling in monocytes and macrophages is important during seeding and growth of breast metastasis in the lung. ABSTRACT: Metastasis is the systemic manifestation of cancer and the main cause of death from breast cancer. In mouse models of lung metastases, recruitment of classical monocytes from blood to the lung and their differentiation to metastasis-associated macrophages (MAMs) facilitate cancer cell extravasation, survival and growth. Ablation of MAMs or their monocytic progenitors inhibits metastasis. We hypothesized that factors controlling macrophage polarization modulate tumor cell extravasation in the lung. We evaluated whether signaling by Th1 or Th2 cytokines in macrophages affected transendothelial migration of tumor cells in vitro. Interferon gamma and LPS inhibited macrophage-dependent tumor cell extravasation while the Th2 cytokine interleukin-4 (IL4) enhanced this process. We demonstrated that IL4 receptor (IL4rα)-null mice developed fewer and smaller lung metastasis in E0771-LG mammary cancer models of this disease. Adoptive transfer of wild-type monocytes to IL4rα-deficient mice partially rescued this phenotype. IL4 signaling in macrophages controlled the expression of the chemokine receptor CXCR2, necessary for IL4-mediated tumor cell extravasation in vitro. Furthermore, IL4 signaling in macrophages regulated the transcript abundance of several other genes already causally associated with mammary cancer lung metastasis including Ccl2, Csf1, Ccr1, Hgf and Flt1. The central role of IL4 signaling in MAMs was confirmed by high-resolution intravital imaging of the lung in mice at the time of metastatic seeding, which showed reduced physical interaction between tumor cells and IL4rα-deficient macrophages. This interaction with wild-type MAMs enhanced tumor cell survival and seeding, which was lost in the IL4rα mice. These data indicate that IL4 signaling in monocytes and macrophages is key during seeding and growth of breast metastasis in the lung, as it regulates pro-tumoral paracrine signaling between cancer cells and macrophages

    A metastasis biomarker (MetaSite Breastâ„¢ Score) is associated with distant recurrence in hormone receptor-positive, HER2-negative early-stage breast cancer

    Get PDF
    Metastasis is the primary cause of death in early-stage breast cancer. We evaluated the association between a metastasis biomarker, which we call "Tumor Microenviroment of Metastasis" (TMEM), and risk of recurrence. TMEM are microanatomic structures where invasive tumor cells are in direct contact with endothelial cells and macrophages, and which serve as intravasation sites for tumor cells into the circulation. We evaluated primary tumors from 600 patients with Stage I-III breast cancer treated with adjuvant chemotherapy in trial E2197 (NCT00003519), plus endocrine therapy for hormone receptor (HR)+ disease. TMEM were identified and enumerated using an analytically validated, fully automated digital pathology/image analysis method (MetaSite Breast™), hereafter referred to as MetaSite Score (MS). The objectives were to determine the association between MS and distant relapse free interval (DRFI) and relapse free interval (RFI). MS was not associated with tumor size or nodal status, and correlated poorly with Oncotype DX Recurrence Score (r = 0.29) in 297 patients with HR+/HER2- disease. Proportional hazards models revealed a significant positive association between continuous MS and DRFI (p = 0.001) and RFI (p = 0.00006) in HR+/HER2- disease in years 0-5, and by MS tertiles for DRFI (p = 0.04) and RFI (p = 0.01), but not after year 5 or in triple negative or HER2+ disease. Multivariate models in HR+/HER- disease including continuous MS, clinical covariates, and categorical Recurrence Score ( 30) showed MS is an independent predictor for 5-year RFI (p = 0.05). MetaSite Score provides prognostic information for early recurrence complementary to clinicopathologic features and Recurrence Score.Breast Cancer Research Foundatio

    AI-based chatbot micro-intervention for parents: Meaningful engagement, learning, and efficacy

    Get PDF
    IntroductionMental health issues have been on the rise among children and adolescents, and digital parenting programs have shown promising outcomes. However, there is limited research on the potential efficacy of utilizing chatbots to promote parental skills. This study aimed to understand whether parents learn from a parenting chatbot micro intervention, to assess the overall efficacy of the intervention, and to explore the user characteristics of the participants, including parental busyness, assumptions about parenting, and qualitative engagement with the chatbot.MethodsA sample of 170 parents with at least one child between 2–11 years old were recruited. A randomized control trial was conducted. Participants in the experimental group accessed a 15-min intervention that taught how to utilize positive attention and praise to promote positive behaviors in their children, while the control group remained on a waiting list.ResultsResults showed that participants engaged with a brief AI-based chatbot intervention and were able to learn effective praising skills. Although scores moved in the expected direction, there were no significant differences by condition in the praising knowledge reported by parents, perceived changes in disruptive behaviors, or parenting self-efficacy, from pre-intervention to 24-hour follow-up.DiscussionThe results provided insight to understand how parents engaged with the chatbot and suggests that, in general, brief, self-guided, digital interventions can promote learning in parents. It is possible that a higher dose of intervention may be needed to obtain a therapeutic change in parents. Further research implications on chatbots for parenting skills are discussed
    • …
    corecore