61 research outputs found
In situ TEM study of twin boundary migration in sub-micron Be fibers
Deformation twinning in hexagonal crystals is often considered as a way to
palliate the lack of independent slip systems. This mechanism might be either
exacerbated or shut down in small-scale crystals whose mechanical behavior can
significantly deviate from bulk materials. Here, we show that sub-micron
beryllium fibers initially free of dislocation and tensile tested in-situ in a
transmission electron microscope (TEM) deform by a twin thickening. The propagation speed of the twin boundary
seems to be entirely controlled by the nucleation of twinning dislocations
directly from the surface. The shear produced is in agreement with the repeated
lateral motion of twinning dislocations. We demonstrate that the activation
volume () associated with the twin boundary propagation can be retrieved
from the measure of the twin boundary speed as the stress decreases as in a
classical relaxation mechanical test. The value of is comparable to the value expected from surface
nucleation.Comment: 13 pages, 9 figure
Protein-tyrosine Phosphatase (PTP) Wedge Domain Peptides: A NOVEL APPROACH FOR INHIBITION OF PTP FUNCTION AND AUGMENTATION OF PROTEIN-TYROSINE KINASE FUNCTION
Inhibition of protein-tyrosine phosphatases (PTPs) counterbalancing protein-tyrosine kinases (PTKs) offers a strategy for augmenting PTK actions. Conservation of PTP catalytic sites limits development of specific PTP inhibitors. A number of receptor PTPs, including the leukocyte common antigen-related (LAR) receptor and PTPmu, contain a wedge-shaped helix-loop-helix located near the first catalytic domain. Helix-loop-helix domains in other proteins demonstrate homophilic binding and inhibit function; therefore, we tested the hypothesis that LAR wedge domain peptides would exhibit homophilic binding, bind to LAR, and inhibit LAR function. Fluorescent beads coated with LAR or PTPmu wedge peptides demonstrated PTP-specific homophilic binding, and LAR wedge peptide-coated beads precipitated LAR protein. Administration of LAR wedge Tat peptide to PC12 cells resulted in increased proliferation, decreased cell death, increased neurite outgrowth, and augmented Trk PTK-mediated responses to nerve growth factor (NGF), a phenotype matching that found in PC12 cells with reduced LAR levels. PTPmu wedge Tat peptide had no effect on PC12 cells but blocked the PTPmu-dependent phenotype of neurite outgrowth of retinal ganglion neurons on a PTPmu substrate, whereas LAR wedge peptide had no effect. The survival- and neurite-promoting effect of the LAR wedge peptide was blocked by the Trk inhibitor K252a, and reciprocal co-immunoprecipitation demonstrated LAR/TrkA association. The addition of LAR wedge peptide inhibited LAR co-immunoprecipitation with TrkA, augmented NGF-induced activation of TrkA, ERK, and AKT, and in the absence of exogenous NGF, induced activation of TrkA, ERK, and AKT. PTP wedge domain peptides provide a unique PTP inhibition strategy and offer a novel approach for augmenting PTK function
Chondroitin sulfates and their binding molecules in the central nervous system
Chondroitin sulfate (CS) is the most abundant glycosaminoglycan (GAG) in the central nervous system (CNS) matrix. Its sulfation and epimerization patterns give rise to different forms of CS, which enables it to interact specifically and with a significant affinity with various signalling molecules in the matrix including growth factors, receptors and guidance molecules. These interactions control numerous biological and pathological processes, during development and in adulthood. In this review, we describe the specific interactions of different families of proteins involved in various physiological and cognitive mechanisms with CSs in CNS matrix. A better understanding of these interactions could promote a development of inhibitors to treat neurodegenerative diseases
- …