129 research outputs found
Silence Is Not Golden: Invisible Latinas Living with HIV in the Midwest
This qualitative study was conducted to better understand the health needs and concerns of immigrant HIV-infected Latinas residing in the Midwest United States. Individual interviews (n = 18) were conducted in Spanish with Latinas in Kansas, Oklahoma and Missouri. Women were at different stages of acceptance about their HIV diagnosis and four common themes emerged from the data: pregnancy as a death sentence, HIV is taboo, God as their only resource, and living in isolation. Silence was an over-arching theme present throughout all the narratives and many women had never shared their stories about HIV with anyone. Depressive symptoms and suicidal ideation were common. These findings have implications for strategies to address the HIV prevention and HIV-related healthcare needs of this population of women. Results from this study further suggest that efforts are needed to break the silence surrounding HIV and to reduce HIV-related stigma in smaller Midwestern Hispanic communities
Mucinous histology predicts for poor response rate and overall survival of patients with colorectal cancer and treated with first-line oxaliplatin- and/or irinotecan-based chemotherapy
The objective of this study was to investigate the efficacy of first-line chemotherapy containing irinotecan and/or oxaliplatin in patients with advanced mucinous colorectal cancer. Prognostic factors associated with response rate and survival were identified using univariate and multivariate logistic and/or Cox proportional hazards analyses. The population included 255 patients, of whom 49 (19%) had mucinous and 206 (81%) had non-mucinous colorectal cancer. The overall response rates for mucinous and non-mucinous tumours were 18.4 (95% CI, 7.5–29.2%) and 49% (95% CI, 42.2–55.8%), respectively (P=0.0002). After a median follow-up of 45 months, median overall survival for the mucinous patients was 14.0 months compared with 23.4 months for the non-mucinous group (hazard ratio (HR), 1.74; CI 95%, 1.27–3.31; P=0.0034). After adjustment for significant features by multivariate Cox regression analysis, mucinous histology was associated with poor overall survival (HR, 1.593, 95% CI, 1.05–2.40; P=0.0267), together with performance status ECOG 2, number of metastatic sites ⩾2, and peritoneal metastases. This retrospective analysis shows that patients with mucinous colorectal cancer have poor responsiveness to oxaliplatin/irinotecan-based first-line combination chemotherapy and an unfavourable prognosis compared with non-mucinous colorectal cancer patients
miR-27b Targets KSRP to Coordinate TLR4-Mediated Epithelial Defense against Cryptosporidium parvum Infection
Cryptosporidium is a protozoan parasite that infects the gastrointestinal epithelium and causes a diarrheal disease. Toll-like receptor (TLR)- and NF-κB-mediated immune responses from epithelial cells, such as production of antimicrobial peptides and generation of reactive nitrogen species, are important components of the host's defense against cryptosporidial infection. Here we report data demonstrating a role for miR-27b in the regulation of TLR4/NF-κB-mediated epithelial anti-Cryptosporidium parvum responses. We found that C. parvum infection induced nitric oxide (NO) production in host epithelial cells in a TLR4/NF-κB-dependent manner, with the involvement of the stabilization of inducible NO synthase (iNOS) mRNA. C. parvum infection of epithelial cells activated NF-κB signaling to increase transcription of the miR-27b gene. Meanwhile, downregulation of KH-type splicing regulatory protein (KSRP) was detected in epithelial cells following C. parvum infection. Importantly, miR-27b targeted the 3′-untranslated region of KSRP, resulting in translational suppression. C. parvum infection decreased KSRP expression through upregulating miR-27b. Functional manipulation of KSRP or miR-27b caused reciprocal alterations in iNOS mRNA stability in infected cells. Forced expression of KSRP and inhibition of miR-27b resulted in an increased burden of C. parvum infection. Downregulation of KSRP through upregulating miR-27b was also detected in epithelial cells following LPS stimulation. These data suggest that miR-27b targets KSRP and modulates iNOS mRNA stability following C. parvum infection, a process that may be relevant to the regulation of epithelial anti-microbial defense in general
Analysis of Dehydration and Strength in Elite Badminton Players
Background: The negative effects of dehydration on aerobic activities are well established. However, it is unknown how dehydration affects intermittent sports performance. The purpose of this study was to identify the level of dehydration in elite badminton players and its relation to muscle strength and power production. Methodology: Seventy matches from the National Spanish badminton championship were analyzed (46 men?s singles and 24 women?s singles). Before and after each match, jump height and power production were determined during a countermovement jump on a force platform. Participants? body weight and a urine sample were also obtained before and after each match. The amount of liquid that the players drank during the match was also calculated by weighing their individual drinking bottles. Results and Discussion: Sweat rate during the game was 1.1460.46 l/h in men and 1.0260.64 l/h in women. The players rehydrated at a rate of 1.1060.55 l/h and 1.0160.44 l/h in the male and female groups respectively. Thus, the dehydration attained during the game was only 0.3760.50% in men and 0.3260.83% in women. No differences were found in any of the parameters analyzed during the vertical jump (men: from 31.8265.29 to 32.9064.49 W/kg; p.0.05, women: from 26.3664.73 to 27.2564.44 W/kg; p.0.05). Post-exercise urine samples revealed proteinuria (60.9% of cases in men and 66.7% in women), leukocyturia (men = 43.5% and women = 50.0%) and erythrocyturia (men = 50.0% and women = 21.7%). Conclusions: Despite a moderate sweat rate, badminton players adequately hydrated during a game and thus the dehydration attained was low. The badminton match did not cause muscle fatigue but it significantly increased the prevalence of proteinuria, leukocyturia and erythrocyturia
Deep Sequencing Whole Transcriptome Exploration of the σE Regulon in Neisseria meningitidis
Bacteria live in an ever-changing environment and must alter protein expression promptly to adapt to these changes and survive. Specific response genes that are regulated by a subset of alternative σ70-like transcription factors have evolved in order to respond to this changing environment. Recently, we have described the existence of a σE regulon including the anti-σ-factor MseR in the obligate human bacterial pathogen Neisseria meningitidis. To unravel the complete σE regulon in N. meningitidis, we sequenced total RNA transcriptional content of wild type meningococci and compared it with that of mseR mutant cells (ΔmseR) in which σE is highly expressed. Eleven coding genes and one non-coding gene were found to be differentially expressed between H44/76 wildtype and H44/76ΔmseR cells. Five of the 6 genes of the σE operon, msrA/msrB, and the gene encoding a pepSY-associated TM helix family protein showed enhanced transcription, whilst aniA encoding a nitrite reductase and nspA encoding the vaccine candidate Neisserial surface protein A showed decreased transcription. Analysis of differential expression in IGRs showed enhanced transcription of a non-coding RNA molecule, identifying a σE dependent small non-coding RNA. Together this constitutes the first complete exploration of an alternative σ-factor regulon in N. meningitidis. The results direct to a relatively small regulon indicative for a strictly defined response consistent with a relatively stable niche, the human throat, where N. meningitidis resides
NPY Neuron-Specific Y2 Receptors Regulate Adipose Tissue and Trabecular Bone but Not Cortical Bone Homeostasis in Mice
BACKGROUND: Y2 receptor signalling is known to be important in neuropeptide Y (NPY)-mediated effects on energy homeostasis and bone physiology. Y2 receptors are located post-synaptically as well as acting as auto receptors on NPY-expressing neurons, and the different roles of these two populations of Y2 receptors in the regulation of energy homeostasis and body composition are unclear. METHODOLOGY/PRINCIPAL FINDINGS: We thus generated two conditional knockout mouse models, Y2(lox/lox) and NPYCre/+;Y2(lox/lox), in which Y2 receptors can be selectively ablated either in the hypothalamus or specifically in hypothalamic NPY-producing neurons of adult mice. Specific deletion of hypothalamic Y2 receptors increases food intake and body weight compared to controls. Importantly, specific ablation of hypothalamic Y2 receptors on NPY-containing neurons results in a significantly greater adiposity in female but not male mice, accompanied by increased hepatic triglyceride levels, decreased expression of liver carnitine palmitoyltransferase (CPT1) and increased expression of muscle phosphorylated acetyl-CoA carboxylase (ACC). While food intake, body weight, femur length, bone mineral content, density and cortical bone volume and thickness are not significantly altered, trabecular bone volume and number were significantly increased by hypothalamic Y2 deletion on NPY-expressing neurons. Interestingly, in situ hybridisation reveals increased NPY and decreased proopiomelanocortin (POMC) mRNA expression in the arcuate nucleus of mice with hypothalamus-specific deletion of Y2 receptors in NPY neurons, consistent with a negative feedback mechanism between NPY expression and Y2 receptors on NPY-ergic neurons. CONCLUSIONS/SIGNIFICANCE: Taken together these data demonstrate the anti-obesogenic role of Y2 receptors in the brain, notably on NPY-ergic neurons, possibly via inhibition of NPY neurons and concomitant stimulation of POMC-expressing neurons in the arcuate nucleus of the hypothalamus, reducing lipogenic pathways in liver and/or skeletal muscle in females. These data also reveal as an anti-osteogenic effect of Y2 receptors on hypothalamic NPY-expressing neurons on trabecular but not on cortical bone
Event-Related Potential Correlates of Performance-Monitoring in a Lateralized Time-Estimation Task
Performance-monitoring as a key function of cognitive control covers a wide range of diverse processes to enable goal directed behavior and to avoid maladjustments. Several event-related brain potentials (ERP) are associated with performance-monitoring, but their conceptual background differs. For example, the feedback-related negativity (FRN) is associated with unexpected performance feedback and might serve as a teaching signal for adaptational processes, whereas the error-related negativity (ERN) is associated with error commission and subsequent behavioral adaptation. The N2 is visible in the EEG when the participant successfully inhibits a response following a cue and thereby adapts to a given stop-signal. Here, we present an innovative paradigm to concurrently study these different performance-monitoring-related ERPs. In 24 participants a tactile time-estimation task interspersed with infrequent stop-signal trials reliably elicited all three ERPs. Sensory input and motor output were completely lateralized, in order to estimate any hemispheric processing preferences for the different aspects of performance monitoring associated with these ERPs. In accordance with the literature our data suggest augmented inhibitory capabilities in the right hemisphere given that stop-trial performance was significantly better with left- as compared to right-hand stop-signals. In line with this, the N2 scalp distribution was generally shifted to the right in addition to an ipsilateral shift in relation to the response hand. Other than that, task lateralization affected neither behavior related to error and feedback processing nor ERN or FRN. Comparing the ERP topographies using the Global Map Dissimilarity index, a large topographic overlap was found between all considered components.With an evenly distributed set of trials and a split-half reliability for all ERP components ≥.85 the task is well suited to efficiently study N2, ERN, and FRN concurrently which might prove useful for group comparisons, especially in clinical populations
Mitochondrial respiratory states and rate
As the knowledge base and importance of mitochondrial physiology to human health expands, the necessity for harmonizing the terminologyconcerning mitochondrial respiratory states and rates has become increasingly apparent. Thechemiosmotic theoryestablishes the mechanism of energy transformationandcoupling in oxidative phosphorylation. Theunifying concept of the protonmotive force providestheframeworkfordeveloping a consistent theoretical foundation ofmitochondrial physiology and bioenergetics.We followguidelines of the International Union of Pure and Applied Chemistry(IUPAC)onterminology inphysical chemistry, extended by considerationsofopen systems and thermodynamicsof irreversible processes.Theconcept-driven constructive terminology incorporates the meaning of each quantity and alignsconcepts and symbols withthe nomenclature of classicalbioenergetics. We endeavour to provide a balanced view ofmitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes.Uniform standards for evaluation of respiratory states and rates will ultimatelycontribute to reproducibility between laboratories and thussupport the development of databases of mitochondrial respiratory function in species, tissues, and cells.Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery
- …