56 research outputs found

    Performance of nonparametric species richness estimators in a high diversity plant community

    Get PDF
    The efficiency of four nonparametric species richness estimators - first-order Jackknife, second-order Jackknife, Chao2 and Bootstrap - was tested using simulated quadrat sampling of two field data sets (a sandy 'Dune' and adjacent 'Swale') in high diversity shrublands (kwongan) in south-western Australia. The data sets each comprised > 100 perennial plant species and < 10 000 individuals, and the explicit (x-y coordinate) location of every individual. We applied two simulated sampling strategies to these data sets based on sampling quadrats of unit sizes 1/400th and 1/100th of total plot area. For each site and sampling strategy we obtained 250 independent sample curves, of 250 quadrats each, and compared the estimators' performances by using three indices of bias and precision: MRE (mean relative error), MSRE (mean squared relative error) and OVER (percentage overestimation). The analysis presented here is unique in providing sample estimates derived from a complete, field-based population census for a high diversity plant community. In general the true reference value was approached faster for a comparable area sampled for the smaller quadrat size and for the swale field data set, which was characterized by smaller plant size and higher plant density. Nevertheless, at least 15-30% of the total area needed to be sampled before reasonable estimates of St (total species richness) were obtained. In most field surveys, typically less than 1% of the total study domain is likely to be sampled, and at this sampling intensity underestimation is a problem. Results showed that the second-order Jackknife approached the actual value of St more quickly than the other estimators. All four estimators were better than Sobs (observed number of species). However, the behaviour of the tested estimators was not as good as expected, and even with large sample size (number of quadrats sampled) all of them failed to provide reliable estimates. First- and second-order Jackknives were positively biased whereas Chao2 and Bootstrap were negatively biased. The observed limitations in the estimators' performance suggests that there is still scope for new tools to be developed by statisticians to assist in the estimation of species richness from sample data, especially in communities with high species richness

    Subcontinental heat wave triggers terrestrial and marine, multi-taxa responses

    Get PDF
    Heat waves have profoundly impacted biota globally over the past decade, especially where their ecological impacts are rapid, diverse, and broad-scale. Although usually considered in isolation for either terrestrial or marine ecosystems, heat waves can straddle ecosystems of both types at subcontinental scales, potentially impacting larger areas and taxonomic breadth than previously envisioned. Using climatic and multi-species demographic data collected in Western Australia, we show that a massive heat wave event straddling terrestrial and maritime ecosystems triggered abrupt, synchronous, and multi-trophic ecological disruptions, including mortality, demographic shifts and altered species distributions. Tree die-off and coral bleaching occurred concurrently in response to the heat wave, and were accompanied by terrestrial plant mortality, seagrass and kelp loss, population crash of an endangered terrestrial bird species, plummeting breeding success in marine penguins, and outbreaks of terrestrial wood-boring insects. These multiple taxa and trophic-level impacts spanned \u3e300,000 km2—comparable to the size of California—encompassing one terrestrial Global Biodiversity Hotspot and two marine World Heritage Areas. The subcontinental multi-taxa context documented here reveals that terrestrial and marine biotic responses to heat waves do not occur in isolation, implying that the extent of ecological vulnerability to projected increases in heat waves is underestimated

    Fire as a fundamental ecological process: Research advances and frontiers

    Get PDF
    © 2020 The Authors. Journal of Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society Fire is a powerful ecological and evolutionary force that regulates organismal traits, population sizes, species interactions, community composition, carbon and nutrient cycling and ecosystem function. It also presents a rapidly growing societal challenge, due to both increasingly destructive wildfires and fire exclusion in fire-dependent ecosystems. As an ecological process, fire integrates complex feedbacks among biological, social and geophysical processes, requiring coordination across several fields and scales of study. Here, we describe the diversity of ways in which fire operates as a fundamental ecological and evolutionary process on Earth. We explore research priorities in six categories of fire ecology: (a) characteristics of fire regimes, (b) changing fire regimes, (c) fire effects on above-ground ecology, (d) fire effects on below-ground ecology, (e) fire behaviour and (f) fire ecology modelling. We identify three emergent themes: the need to study fire across temporal scales, to assess the mechanisms underlying a variety of ecological feedbacks involving fire and to improve representation of fire in a range of modelling contexts. Synthesis: As fire regimes and our relationships with fire continue to change, prioritizing these research areas will facilitate understanding of the ecological causes and consequences of future fires and rethinking fire management alternatives

    Fire as a fundamental ecological process: Research advances and frontiers

    Get PDF
    © 2020 The Authors.Fire is a powerful ecological and evolutionary force that regulates organismal traits, population sizes, species interactions, community composition, carbon and nutrient cycling and ecosystem function. It also presents a rapidly growing societal challenge, due to both increasingly destructive wildfires and fire exclusion in fire‐dependent ecosystems. As an ecological process, fire integrates complex feedbacks among biological, social and geophysical processes, requiring coordination across several fields and scales of study. Here, we describe the diversity of ways in which fire operates as a fundamental ecological and evolutionary process on Earth. We explore research priorities in six categories of fire ecology: (a) characteristics of fire regimes, (b) changing fire regimes, (c) fire effects on above‐ground ecology, (d) fire effects on below‐ground ecology, (e) fire behaviour and (f) fire ecology modelling. We identify three emergent themes: the need to study fire across temporal scales, to assess the mechanisms underlying a variety of ecological feedbacks involving fire and to improve representation of fire in a range of modelling contexts. Synthesis: As fire regimes and our relationships with fire continue to change, prioritizing these research areas will facilitate understanding of the ecological causes and consequences of future fires and rethinking fire management alternatives.Support was provided by NSF‐DEB‐1743681 to K.K.M. and A.J.T. We thank Shalin Hai‐Jew for helpful discussion of the survey and qualitative methods.Peer reviewe

    Interval squeeze: altered fire regimes and demographic responses interact to threaten woody species persistence as climate changes

    Get PDF
    Projected effects of climate change across many ecosystems globally include more frequent disturbance by fire and reduced plant growth due to warmer (and especially drier) conditions. Such changes affect species - particularly fire-intolerant woody plants - by simultaneously reducing recruitment, growth, and survival. Collectively, these mechanisms may narrow the fire interval window compatible with population persistence, driving species to extirpation or extinction. We present a conceptual model of these combined effects, based on synthesis of the known impacts of climate change and altered fire regimes on plant demography, and describe a syndrome we term interval squeeze. This model predicts that interval squeeze will increase woody plant extinction risk and change ecosystem structure, composition, and carbon storage, especially in regions projected to become both warmer and drier. These predicted changes demand new approaches to fire management that will maximize the in situ adaptive capacity of species to respond to climate change and fire regime change

    Species-specific traits plus stabilizing processes best explain coexistence in biodiverse fire-prone plant communities

    Get PDF
    Coexistence in fire-prone Mediterranean-type shrublands has been explored in the past using both neutral and niche-based models. However, distinct differences between plant functional types (PFTs), such as fire-killed vs resprouting responses to fire, and the relative similarity of species within a PFT, suggest that coexistence models might benefit from combining both neutral and niche-based (stabilizing) approaches. We developed a multispecies metacommunity model where species are grouped into two PFTs (fire-killed vs resprouting) to investigate the roles of neutral and stabilizing processes on species richness and rank-abundance distributions. Our results show that species richness can be maintained in two ways: i) strictly neutral species within each PFT, or ii) species within PFTs differing in key demographic properties, provided that additional stabilizing processes, such as negative density regulation, also operate. However, only simulations including stabilizing processes resulted in structurally realistic rank-abundance distributions over plausible time scales. This result underscores the importance of including both key species traits and stabilizing (niche) processes in explaining species coexistence and community structure

    Biomass and litter accumulation patterns in species-rich shrublands for fire hazard assessment

    No full text
    Fuel age is an imprecise surrogate for fire hazard in species-rich Mediterranean-type shrublands. We present an efficient method for aerial biomass and litter estimation of shrublands on sandy and calcareous substrates in south-western Australia that enables fuel accumulation patterns to be compared independently of vegetation age. For sites ranging 3–16 years since last fire, total available fuel loads were 2.7–7.6 t ha–1 for the sandplain and 2.6–8.14 t ha–1 for the calcareous shrublands. Despite calcareous shrublands having higher soil nutrient concentrations and winter rainfall, total available fuel loads were similar between community types over the range of fuel ages examined. Sandplain biomass was dominated by resprouters and calcareous sites, by non-sprouters. Topographic variation in fuel loads was observed among sandplain sites, with greater available biomass and litter on the deeper sands of dunes compared to swales. More rapid fuel accumulation at the youngest sites and more uniform canopy structure in the calcareous shrublands indicate that they have the potential to support fire at shorter intervals than the sandplain. For each community type, an allometric equation based on the relationship between average maximum plant height and total available fuel was derived that enables rapid estimation of fuel loads that is more accurate than using fuel age

    Soil fungal responses to experimental warming and drying in a Mediterranean shrubland

    Get PDF
    Implications of a drying and warming climate have been investigated for aboveground vegetation across a range of biomes yet below-ground effects on microorganisms have received considerably less attention, especially in Mediterranean Type Ecosystems (MTE) that are predicted to be negatively impacted by climate change. We experimentally reduced rainfall and increased temperature across two contrasting study sites (deep sand dune vs shallow sand swale) to test how projected future climate conditions may impact soil fungal composition, richness and diversity. We also assessed fungal OTU warming responses and putative functions of 100 most abundant OTUs and 120 OTUs that either increased or decreased based on their presence/absence across treatments. We found a significant effect of study site, treatment and canopy species on fungal composition. Soil fungal diversity increased under warming treatment in swale plots as compared to control plots indicating a positive effect of warming on fungal diversity. In dunes, significantly more OTUs responded to drought than warming treatment. Among the most abundant soil fungal putative functional groups were endophytes, ericoid mycorrhizas, yeasts and ectomycorrhizas consistent with previous studies. Plant pathogens were found to increase across dunes and swales, while ericoid mycorrhizae decreased. In summary, our study revealed that it is critical to understand belowground microbial patterns as a result of climate change treatments for our ability to better predict how ecosystems may respond to global environmental changes in the future

    The ecology of conifer persistence in tropical rainforests: Podocarpus neriifolius in northern Thailand

    No full text
    A range of hypotheses seek to explain why conifers are infrequent in tropical rainforests. Here, we explore how the conifer, Podocarpus neriifolius, persists at low density in tropical lower montane rainforests of northern Thailand. Recruitment, growth and survival of seedlings and small saplings was monitored for 3.5 years in plots near and away from putative parent trees, and for large saplings and trees in a 16 ha forest plot over 8 years. Seeds and strobili were collected in litterfall traps for 2 years, and pollen rain extracted from forest floor moss samples. Demographic rates and ecophysiological traits of saplings were compared with co-occurring angiosperms Castanopsis acuminatissima and Calophyllum polyanthum. Survivorship was higher in the conifer for all size classes \u3e 30 cm ht (0.97–0.99 y−1 vs. 0.92–0.98). Growth rate was similar for small saplings (9.3–12.6 cm y−1 ht), higher in P. neriifolius for large saplings (0.21 cm y−1 dbh vs. 0.11–0.12), but lower for trees (0.10 cm y−1 vs. 0.16–0.45). Canopy openness above saplings was similar amongst species (3.2–4.2%), whilst leaf N was lower (1.33% vs. 1.43–1.49%), and mass leaf per area (1.96 vs. 1.88) and δ13C higher (− 33.4 ‰ vs. – 34 to 34.9‰) for P. neriifolius. Pollen rain varied between plots, as did strobilus and seed fall between both plots and years, with highest pollen density, strobilus and seed fall close to parent trees, as were areas with highest seedling density and recruitment. High survivorship, high recruitment near parent trees and more widespread recruitment in mast years, offsets slower growth to ensure population persistence of P. neriifolius in angiosperm-dominated rainforest. Low stand density and patchy distribution is best explained by pollen limitation on seed production, with strong recruitment only where male and female trees occur in close proximity, and in mast seed years
    corecore