47 research outputs found

    Alternative splicing of the angiogenesis associated extra-domain B of fibronectin regulates the accessibility of the B-C loop of the type III repeat 8

    Get PDF
    BACKGROUND: Fibronectin (FN) is a multi-domain molecule involved in many cellular processes, including tissue repair, embryogenesis, blood clotting, and cell migration/adhesion. The biological activities of FN are mediated by exposed loops located mainly at the interdomain interfaces that interact with various molecules such as, but not only, integrins. Different FN isoforms arise from the alternative splicing of the pre-mRNA. In malignancies, the splicing pattern of FN pre-mRNA is altered; in particular, the FN isoform containing the extra-domain B (ED-B), a complete FN type III repeat constituted by 91 residues, is undetectable in normal adult tissues, but exhibits a much greater expression in fetal and tumor tissues, and is accumulated around neovasculature during angiogenic processes, thus making ED-B one of the best markers and targets of angiogenesis. The functions of ED-B are still unclear; however, it has been postulated that the insertion of an extra-domain such as ED-B modifies the domain-domain interface and may unmask loops that are otherwise cryptic, thus giving FN new potential activities. METHODOLOGY: We used the mAb C6, which reacts with ED-B containing FN, but not with ED-B-free FN and various recombinant FN fragments containing mutations, to precisely localize the epitopes recognized by the mAb C6. CONCLUSION: We formally demonstrated that the inclusion of the alternatively spliced angiogenesis-associated ED-B leads to the unmasking of the FNIII 8 B-C loop that is cryptic in FN molecules lacking ED-B. Thus, the mAb C6, in addition to providing a new reagent for angiogenesis targeting, represents a new tool for the study of the potential biological functions of the B-C loop of the repeat FNIII 8 that is unmasked during angiogenic processes

    Use of uteroglobin for the engineering of polyvalent, polyspecific fusion proteins

    Get PDF
    We report a novel strategy to engineer and express stable and soluble human recombinant polyvalent/polyspecific fusion proteins. The procedure is based on the use of a central skeleton of uteroglobin, a small and very soluble covalently linked homodimeric protein that is very resistant to proteolytic enzymes and to pH variations. Using a human recombinant antibody (scFv) specific for the angiogenesis marker domain B of fibronectin, interleukin 2, and an scFv able to neutralize tumor necrosis factor-α, we expressed various biologically active uteroglobin fusion proteins. The results demonstrate the possibility to generate monospecific divalent and tetravalent antibodies, immunocytokines, and dual specificity tetravalent antibodies. Furthermore, compared with similar fusion proteins in which uteroglobin was not used, the use of uteroglobin improved properties of solubility and stability. Indeed, in the reported cases it was possible to vacuum dry and reconstitute the proteins without any aggregation or loss in protein and biological activity

    Chibby drives β catenin cytoplasmic accumulation leading to activation of the unfolded protein response in BCR-ABL1+ cells

    Get PDF
    Chronic myeloid leukemia (CML) is a myeloproliferative disease caused by the constitutive tyrosine kinase (TK) activity of the BCR-ABL fusion protein. However, the phenotype of leukemic stem cells (LSC) is sustained by β catenin rather than by the BCR-ABL TK. β catenin activity in CML is contingent upon its stabilization proceeding from the BCR-ABL-induced phosphorylation at critical residues for interaction with the Adenomatous polyposis coli (APC)/Axin/glycogen synthase kinase 3 (GSK3) destruction complex or GSK3 inactivating mutations. Here we studied the impact of β catenin antagonist Chibby (CBY) on β catenin signaling in BCR-ABL1+ cells. CBY is a small conserved protein which interacts with β catenin and impairs β catenin-mediated transcriptional activation through two distinct molecular mechanisms: 1) competition with T cell factor (TCF) or lymphoid enhancer factor (LEF) for β catenin binding; and 2) nuclear export of β catenin via interaction with 14-3-3. We found that its enforced expression in K562 cell line promoted β catenin cytoplasmic translocation resulting in inhibition of target gene transcription. Moreover, cytoplasmic accumulation of β catenin activated the endoplasmic reticulum (ER) stress-associated pathway known as unfolded protein response (UPR). CBY-driven cytoplasmic accumulation of β catenin is also a component of BCR-ABL1+ cell response to the TK inhibitor Imatinib (IM). It evoked the UPR activation leading to the induction of BCL2-interacting mediator of cell death (BIM) by UPR sensors. BIM, in turn, contributed to the execution phase of apoptosis in the activation of ER resident caspase 12 and mobilization of Ca2+ stores

    Cardiovascular Post-Acute COVID-19 Syndrome: Definition, Clinical Scenarios, Diagnosis, and Management

    Get PDF
    Post-acute COVID-19 syndrome (PACS) describes the clinical condition of some SARS-CoV-2-infected patients in which a wide range of signs and symptoms that persist for several months after the acute phase of the disease. Cardiovascular symptoms including chest pain, dyspnea, elevated blood pressure, palpitations, inappropriate tachycardia, fatigue, and exercise intolerance are common in this condition. Some infected patients develop cardiovascular diseases such as myocarditis, pericarditis, new or worsening myocardial ischemia due to obstructive coronary artery disease, microvascular dysfunction, stress cardiomyopathy, thromboembolism, cardiovascular sequelae of pulmonary disease, arrhythmias, while others have cardiovascular symptoms without objective evidence of cardiovascular abnormalities. In the present chapter, definition, spectrum of manifestations, clinical scenarios, diagnosis, management, and therapy of cardiovascular PACS will be discussed

    Targeting the Endothelin-1 Receptors Curtails Tumor Growth and Angiogenesis in Multiple Myeloma

    Get PDF
    The endothelin-1 (ET-1) receptors were recently found to mediate pro-survival functions in multiple myeloma (MM) cells in response to autocrine ET-1. This study investigated the effectiveness of macitentan, a dual ET-1 receptor antagonist, in MM treatment, and the mechanisms underlying its activities. Macitentan affected significantly MM cell (RPMI-8226, U266, KMS-12-PE) survival and pro-angiogenic cytokine release by down-modulating ET-1-activated MAPK/ERK and HIF-1 alpha pathways, respectively. HIF-1 alpha silencing abrogated the ET-1 mediated induction of genes encoding for pro-angiogenic cytokines such as VEGF-A, IL-8, Adrenomedullin, and ET-1 itself. Upon exposure to macitentan, MM cells cultured in the presence of the hypoxia-mimetic agent CoCl2, exogenous ET-1, or CoCl2 plus ET-1, down-regulated HIF-1 alpha and the transcription and release of downstream pro-angiogenic cytokines. Consistently, macitentan limited significantly the basal pro-angiogenic activity of RPMI-8226 cells in chorioallantoic membrane assay. In xenograft mouse models, established by injecting NOG mice either via intra-caudal vein with U266 or subcutaneously with RPMI-8226 cells, macitentan reduced effectively the number of MM cells infiltrating bone marrow, and the size and microvascular density of subcutaneous MM tumors. ET-1 receptors targeting by macitentan represents an effective anti-proliferative and anti-angiogenic therapeutic approach in preclinical settings of MM

    The ALLgorithMM: How to define the hemodilution of bone marrow samples in lymphoproliferative diseases

    Get PDF
    IntroductionMinimal residual disease (MRD) is commonly assessed in bone marrow (BM) aspirate. However, sample quality can impair the MRD measurement, leading to underestimated residual cells and to false negative results. To define a reliable and reproducible method for the assessment of BM hemodilution, several flow cytometry (FC) strategies for hemodilution evaluation have been compared. MethodsFor each BM sample, cells populations with a well-known distribution in BM and peripheral blood - e.g., mast cells (MC), immature (IG) and mature granulocytes (N) - have been studied by FC and quantified alongside the BM differential count. ResultsThe frequencies of cells' populations were correlated to the IG/N ratio, highlighting a mild correlation with MCs and erythroblasts (R=0.25 and R=0.38 respectively, with p-value=0.0006 and 0.0000052), whereas no significant correlation was found with B or T-cells. The mild correlation between IG/N, erythroblasts and MCs supported the combined use of these parameters to evaluate BM hemodilution, hence the optimization of the ALLgorithMM. Once validated, the ALLgorithMM was employed to evaluate the dilution status of BM samples in the context of MRD assessment. Overall, we found that 32% of FC and 52% of Next Generation Sequencing (NGS) analyses were MRD negative in samples resulted hemodiluted (HD) or at least mildly hemodiluted (mHD). ConclusionsThe high frequency of MRD-negative results in both HD and mHD samples implies the presence of possible false negative MRD measurements, impairing the correct assessment of patients' response to therapy and highlighs the importance to evaluate BM hemodilution
    corecore