190 research outputs found

    A Novel Multiscale Edge Detection Approach Based on Nonsubsampled Contourlet Transform and Edge Tracking

    Get PDF
    Edge detection is a fundamental task in many computer vision applications. In this paper, we propose a novel multiscale edge detection approach based on the nonsubsampled contourlet transform (NSCT): a fully shift-invariant, multiscale, and multidirection transform. Indeed, unlike traditional wavelets, contourlets have the ability to fully capture directional and other geometrical features for images with edges. Firstly, compute the NSCT of the input image. Secondly, the K-means clustering algorithm is applied to each level of the NSCT for distinguishing noises from edges. Thirdly, we select the edge point candidates of the input image by identifying the NSCT modulus maximum at each scale. Finally, the edge tracking algorithm from coarser to finer is proposed to improve robustness against spurious responses and accuracy in the location of the edges. Experimental results show that the proposed method achieves better edge detection performance compared with the typical methods. Furthermore, the proposed method also works well for noisy images

    Application of bronchoscopic argon plasma coagulation in the treatment of tumorous endobronchial tuberculosis: Historical controlled trial

    Get PDF
    ObjectiveThe purpose of this study was to evaluate the efficacy and safety of bronchoscopic argon plasma coagulation for tumorous endobronchial tuberculosis.MethodsWe analyzed the records of 115 patients with tumorous endobronchial tuberculosis who did not show luminal narrowing of the bronchus at diagnosis. Of these 115 patients, 41 patients received bronchoscopic argon plasma coagulation plus routine antituberculosis chemotherapy (argon plasma coagulation group) and the other 74 patients received only routine antituberculosis chemotherapy (chemotherapy group). The treatment effects between these 2 groups were compared based on changes in lesions, rate of lesion disappearance, and complications associated with bronchoscopic argon plasma coagulation.ResultsThe complete removal rate was 100% in patients in argon plasma coagulation group. About 84.6% lesions disappeared completely in patients in the chemotherapy group. The rate of disappearance of lesions in the argon plasma coagulation group was faster than that of the chemotherapy group. There were no severe complications in the argon plasma coagulation group.ConclusionsBronchoscopic argon plasma coagulation can accelerate the healing of tumorous endobronchial tuberculosis and can help prevent progressive bronchial stenosis resulting from tumorous endobronchial tuberculosis, and it is a very safe method

    INFORMING ONLINE PEDAGOGICAL PRACTICES VIA PEDAGOGICAL PARTNERSHIP APPROACH : A CASE STUDY

    Get PDF
    Pedagogical partnership approach is an emerging practice implemented in the West to encourage the collaboration between instructors and students. This case study was to examine the pedagogical partnership approach in the Eastern online educational settings in University Malaysia Sarawak (UNIMAS) during the COVID-19 pandemic. It involved the joint-effort of an instructor and a student partner (not enrolled in the focal course) to co-create the online learning experience for 66 university students enrolled in a course. Qualitative research method was used to observe student’s online learning behaviour and experience with the support of the quantitative data obtained from the Learning Management System of UNIMAS, eLEAP. The findings show that both good and bad students’ learning behaviour as well as learning experience can be explained by the Eastern deep-rooted culture, importance of sense of presence and community, reliable technology and students’ personalities. The case study also offers valuable information on the role as a student partner in the partnership as well as challenges faced. It also provides some research ideas and suggestions to obtain a deeper understanding of this pedagogical partnership approach

    Energy-spectral efficiency tradeoff of visible light communication systems

    Get PDF

    Wetland expansion on the continental shelf of the northern South China Sea during deglacial sea level rise

    Get PDF
    To identify environmental causes for past changes in vegetation in subtropical East Asia, we present carbon isotope compositions of plant-wax n-alkanes and provide estimates of the C4-plant contribution across the past four glacial terminations and interglacials, based on cores recovered from the northern South China Sea. Our results show a comparable C4-plant contribution between the Last Glacial Maximum (LGM) and the Holocene. An increase of the C4-plant contribution by 15–20% is found for Terminations IV, II and I relative to subsequent interglacial peaks, coeval with an expansion of Cyperaceae and Poaceae. In contrast, Termination V reveals a lower C4-plant contribution than Marine Isotope Stage (MIS) 11c. The data exhibit a long-term trend, with a stepwise increase of the C4-plant contribution across interglacials MIS 11c, 9e, 7e and 1. We suggest that no substantial changes in humidity levels over glacial-interglacial cycles occurred facilitating a similar C3/C4-plant ratio for the LGM and the Holocene. Instead, deglacial sea-level rises caused an extensive development of floodplains and wetlands on the exposed continental shelf, providing habitats for the spread of C4 sedges and grasses. The progressive subsidence of Chinese coastal areas and the broadening of the continental shelf over the late Quaternary explains the nearly absence of C4 plant occurrence during Termination V and a gradual increase of the C4-plant contribution across interglacial peaks. Taken together, changes in coastal environments should be considered when interpreting marine-based vegetation reconstructions from subtropical Asia

    Klotho-derived peptide KP1 ameliorates SARS-CoV-2-associated acute kidney injury

    Get PDF
    Introduction: The severe cases of COVID-19, a disease caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), often present with acute kidney injury (AKI). Although old age and preexisting medical conditions have been identified as principal risk factors for COVID-19-associated AKI, the molecular basis behind such a connection remains unknown. In this study, we investigated the pathogenic role of Klotho deficiency in COVID-19-associated AKI and explored the therapeutic potential of Klotho-derived peptide 1 (KP1).Methods: We assessed the susceptibility of Klotho deficient Kl/Kl mice to developing AKI after expression of SARS-CoV-2 N protein. The role of KP1 in ameliorating tubular injury was investigated by using cultured proximal tubular cells (HK-2) in vitro and mouse model of ischemia-reperfusion injury (IRI) in vivo.Results: Renal Klotho expression was markedly downregulated in various chronic kidney disease (CKD) models and in aged mice. Compared to wild-type counterparts, mutant KL/KL mice were susceptible to overexpression of SARS-CoV-2 N protein and developed kidney lesions resembling AKI. In vitro, expression of N protein alone induced HK-2 cells to express markers of tubular injury, cellular senescence, apoptosis and epithelial-mesenchymal transition, whereas both KP1 and Klotho abolished these lesions. Furthermore, KP1 mitigated kidney dysfunction, alleviated tubular injury and inhibited apoptosis in AKI model induced by IRI and N protein.Conclusion: These findings suggest that Klotho deficiency is a key determinant of developing COVID-19-associated AKI. As such, KP1, a small peptide recapitulating Klotho function, could be an effective therapeutic for alleviating AKI in COVID-19 patients

    MDQC: a new quality assessment method for microarrays based on quality control reports

    Get PDF
    Motivation: The process of producing microarray data involves multiple steps, some of which may suffer from technical problems and seriously damage the quality of the data. Thus, it is essential to identify those arrays with low quality. This article addresses two questions: (1) how to assess the quality of a microarray dataset using the measures provided in quality control (QC) reports; (2) how to identify possible sources of the quality problems. Results: We propose a novel multivariate approach to evaluate the quality of an array that examines the ‘Mahalanobis distance' of its quality attributes from those of other arrays. Thus, we call it Mahalanobis Distance Quality Control (MDQC) and examine different approaches of this method. MDQC flags problematic arrays based on the idea of outlier detection, i.e. it flags those arrays whose quality attributes jointly depart from those of the bulk of the data. Using two case studies, we show that a multivariate analysis gives substantially richer information than analyzing each parameter of the QC report in isolation. Moreover, once the QC report is produced, our quality assessment method is computationally inexpensive and the results can be easily visualized and interpreted. Finally, we show that computing these distances on subsets of the quality measures in the report may increase the method's ability to detect unusual arrays and helps to identify possible reasons of the quality problems. Availability: The library to implement MDQC will soon be available from Bioconductor Contact: [email protected] Supplementary information: Supplementary data are available at Bioinformatics onlin
    • …
    corecore