397 research outputs found

    Reversible Fluorination of Graphene: towards a Two-Dimensional Wide Bandgap Semiconductor

    Full text link
    We report the synthesis and evidence of graphene fluoride, a two-dimensional wide bandgap semiconductor derived from graphene. Graphene fluoride exhibits hexagonal crystalline order and strongly insulating behavior with resistance exceeding 10 GΩ\Omega at room temperature. Electron transport in graphene fluoride is well described by variable-range hopping in two dimensions due to the presence of localized states in the band gap. Graphene obtained through the reduction of graphene fluoride is highly conductive, exhibiting a resistivity of less than 100 kΩ\Omega at room temperature. Our approach provides a new path to reversibly engineer the band structure and conductivity of graphene for electronic and optical applications.Comment: 7 pages, 5 figures, revtex, to appear in PR

    Network-mediated encoding of circadian time: The suprachiasmatic nucleus (SCN) from genes to neurons to circuits, and back

    Get PDF
    The transcriptional architecture of intracellular circadian clocks is similar across phyla, but in mammals interneuronal mechanisms confer a higher level of circadian integration. The suprachiasmatic nucleus (SCN) is a unique model to study these mechanisms, as it operates as a ∌24 h clock not only in the living animal, but also when isolated in culture. This “clock in a dish” can be used to address fundamental questions, such as how intraneuronal mechanisms are translated by SCN neurons into circuit-level emergent properties and how the circuit decodes, and responds to, light input. This review addresses recent developments in understanding the relationship between electrical activity, [Ca(2+)](i), and intracellular clocks. Furthermore, optogenetic and chemogenetic approaches to investigate the distinct roles of neurons and glial cells in circuit encoding of circadian time will be discussed, as well as the epigenetic and circuit-level mechanisms that enable the SCN to translate light input into coherent daily rhythms

    The Quasar-LBG Two-point Angular Cross-correlation Function at z ~ 4 in the COSMOS Field

    Get PDF
    In order to investigate the origin of quasars, we estimate the bias factor for low-luminosity quasars at high redshift for the first time. In this study, we use the two-point angular cross-correlation function (CCF) for both low-luminosity quasars at −24<M1450<−22-24<M_{\rm 1450}<-22 and Lyman-break galaxies (LBGs). Our sample consists of both 25 low-luminosity quasars (16 objects are spectroscopically confirmed low-luminosity quasars) in the redshift range 3.1<z<4.53.1<z<4.5 and 835 color-selected LBGs with zLBGâ€Č<25.0z^{\prime}_{\rm LBG}<25.0 at z∌4z\sim4 in the COSMOS field. We have made our analysis for the following two quasar samples; (1) the spectroscopic sample (the 16 quasars confirmed by spectroscopy), and (2) the total sample (the 25 quasars including 9 quasars with photometric redshifts). The bias factor for low-luminosity quasars at z∌4z\sim4 is derived by utilizing the quasar-LBG CCF and the LBG auto-correlation function. We then obtain the 86%86\% upper limits of the bias factors for low-luminosity quasars, that are 5.63 and 10.50 for the total and the spectroscopic samples, respectively. These bias factors correspond to the typical dark matter halo masses, log (MDM/(h−1M⊙))=(M_{\rm DM}/(h^{-1}M_{\odot}))=12.712.7 and 13.513.5, respectively. This result is not inconsistent with the predicted bias for quasars which is estimated by the major merger models.Comment: 13 pages, 9 figures, Accepted for publication in Ap

    Magnetic Structure of Nano-Graphite Moebius Ribbon

    Full text link
    We consider the electronic and magnetic properties of nanographite ribbon with zigzag edges under the periodic or Moebius boundary conditions. The zigzag nano-graphite ribbons possess edge localized states at the Fermi level which cause a ferrimagnetic spin polarization localized at the edge sites even in the very weak Coulomb interaction. The imposition of the Moebius boundary condition makes the system non-AB-bipartite lattice, and depress the spin polarization, resulting in the formation of a magnetic domain wall. The width of the magnetic domain depends on the Coulomb interaction and narrows with increasing U/t.Comment: 4 pages; 6 figures; published at J. Phys. Soc. Jpn. Vol. 72 No. 5 pp. 998-1001 (2003

    Constraining the coalescence rate of supermassive black-hole binaries using pulsar timing

    Get PDF
    Pulsar timing observations are used to place constraints on the rate of coalescence of supermassive black-hole (SMBH) binaries as a function of mass and redshift. In contrast to the indirect constraints obtained from other techniques, pulsar timing observations provide a direct constraint on the black-hole merger rate. This is possible since pulsar timing is sensitive to the gravitational waves (GWs) emitted by these sources in the final stages of their evolution. We find that upper bounds calculated from the recently published Parkes Pulsar Timing Array data are just above theoretical predictions for redshifts below 10. In the future, with improved timing precision and longer data spans, we show that a non-detection of GWs will rule out some of the available parameter space in a particular class of SMBH binary merger models. We also show that if we can time a set of pulsars to 10ns timing accuracy, for example, using the proposed Square Kilometre Array, it should be possible to detect one or more individual SMBH binary systems

    Investigation of the spin-glass regime between the antiferromagnetic and superconducting phases in Fe1+y_{1+y}Sex_xTe1−x_{1-x}

    Get PDF
    Using bulk magnetization along with elastic and inelastic neutron scattering techniques, we have investigated the phase diagram of Fe1+y_{1+y}Sex_{x}Te1−x_{1-x} and the nature of magnetic correlations in three nonsuperconducting samples of Fe1.01_{1.01}Se0.1_{0.1}Te0.9_{0.9}, Fe1.01_{1.01}Se0.15_{0.15}Te0.85_{0.85} and Fe1.02_{1.02}Se0.3_{0.3}Te0.7_{0.7}. A cusp and hysteresis in the temperature dependence of the magnetization for the x=0.15x=0.15 and 0.3 samples indicates spin-glass (SG) ordering below Tsg=23T_{\rm sg} = 23K. Neutron scattering measurements indicate that the spin-glass behavior is associated with short-range spin density wave (SDW) ordering characterized by a static component and a low-energy dynamic component with a characteristic incommensurate wave vector of Qm=(0.46,0,0.50){\bf Q}_m = (0.46, 0, 0.50) and an anisotropy gap of ∌\sim 2.5 meV. Our high Q{\bf Q}-resolution data also show that the systems undergo a glassy structural distortion that coincides with the short-range SDW order

    Numerical Galaxy Catalog -I. A Semi-analytic Model of Galaxy Formation with N-body simulations

    Full text link
    We construct the Numerical Galaxy Catalog (Îœ\nuGC), based on a semi-analytic model of galaxy formation combined with high-resolution N-body simulations in a Λ\Lambda-dominated flat cold dark matter (Λ\LambdaCDM) cosmological model. The model includes several essential ingredients for galaxy formation, such as merging histories of dark halos directly taken from N-body simulations, radiative gas cooling, star formation, heating by supernova explosions (supernova feedback), mergers of galaxies, population synthesis, and extinction by internal dust and intervening HI clouds. As the first paper in a series using this model, we focus on basic photometric, structural and kinematical properties of galaxies at present and high redshifts. Two sets of model parameters are examined, strong and weak supernova feedback models, which are in good agreement with observational luminosity functions of local galaxies in a range of observational uncertainty. Both models agree well with many observations such as cold gas mass-to-stellar luminosity ratios of spiral galaxies, HI mass functions, galaxy sizes, faint galaxy number counts and photometric redshift distributions in optical pass-bands, isophotal angular sizes, and cosmic star formation rates. In particular, the strong supernova feedback model is in much better agreement with near-infrared (K'-band) faint galaxy number counts and redshift distribution than the weak feedback model and our previous semi-analytic models based on the extended Press-Schechter formalism. (Abridged)Comment: 26 pages including 27 figures, accepted for publication in ApJ, full-resolution version is available at http://grape.astron.s.u-tokyo.ac.jp/~yahagi/nugc

    Constraints on the faint end of the quasar luminosity function at z~5 in the COSMOS field

    Get PDF
    We present the result of our low-luminosity quasar survey in the redshift range of 4.5 < z < 5.5 in the COSMOS field. Using the COSMOS photometric catalog, we selected 15 quasar candidates with 22 < i' < 24 at z~5, that are ~ 3 mag fainter than the SDSS quasars in the same redshift range. We obtained optical spectra for 14 of the 15 candidates using FOCAS on the Subaru Telescope and did not identify any low-luminosity type-1 quasars at z~5 while a low-luminosity type-2 quasar at z~5.07 was discovered. In order to constrain the faint end of the quasar luminosity function at z~5, we calculated the 1sigma confidence upper limits of the space density of type-1 quasars. As a result, the 1sigma confidence upper limits on the quasar space density are Phi< 1.33*10^{-7} Mpc^{-3} mag^{-1} for -24.52 < M_{1450} < -23.52 and Phi< 2.88*10^{-7} Mpc^{-3} mag^{-1} for -23.52 < M_{1450} < -22.52. The inferred 1sigma confidence upper limits of the space density are then used to provide constrains on the faint-end slope and the break absolute magnitude of the quasar luminosity function at z~5. We find that the quasar space density decreases gradually as a function of redshift at low luminosity (M_{1450} ~ -23), being similar to the trend found for quasars with high luminosity (M_{1450}<-26). This result is consistent with the so-called downsizing evolution of quasars seen at lower redshifts.Comment: 8 pages, 9 figures, 1 table, accepted for publication in Ap
    • 

    corecore