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Symposium

Network-Mediated Encoding of Circadian Time: The
Suprachiasmatic Nucleus (SCN) from Genes to Neurons to
Circuits, and Back

Marco Brancaccio,1 Ryosuke Enoki,2 Cristina N. Mazuski,3 X Jeff Jones,4 Jennifer A. Evans,5 and Abdelhalim Azzi6

1Division of Neurobiology, Medical Research Council, Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom, 2Graduate School of
Medicine, Hokkaido University, Sapporo 060-0808, Japan, 3Department of Biology, Washington University, St. Louis, Missouri 63130, 4Vanderbilt
University Medical Center, Vanderbilt University, Nashville, Tennessee 37235, 5Department of Biomedical Sciences, Marquette University, Milwaukee,
Wisconsin 53233, and 6Institute of Pharmacology and Toxicology, University of Zurich, 8006 Zurich, Switzerland

The transcriptional architecture of intracellular circadian clocks is similar across phyla, but in mammals interneuronal mechanisms
confer a higher level of circadian integration. The suprachiasmatic nucleus (SCN) is a unique model to study these mechanisms, as it
operates as a �24 h clock not only in the living animal, but also when isolated in culture. This “clock in a dish” can be used to address
fundamental questions, such as how intraneuronal mechanisms are translated by SCN neurons into circuit-level emergent properties and
how the circuit decodes, and responds to, light input. This review addresses recent developments in understanding the relationship
between electrical activity, [Ca 2�]i , and intracellular clocks. Furthermore, optogenetic and chemogenetic approaches to investigate the
distinct roles of neurons and glial cells in circuit encoding of circadian time will be discussed, as well as the epigenetic and circuit-level
mechanisms that enable the SCN to translate light input into coherent daily rhythms.

Introduction
Understanding the link between genetic programs, neuronal ac-
tivity, and circuit processing that determine animal behavior is a
long-standing goal of neuroscience. Connecting the several steps
necessary to encode behaviors, from genes to neurons to circuits,
has proven a formidable challenge, especially because of the dif-
ficulty in finding experimental approaches to observe the brain
across the several levels of organization involved in this integra-
tion. Such a task is particularly daunting in mammals, whose
exceptional richness of neuronal cell types and inherent connec-
tivity make it extremely difficult to map both the anatomical and
functional interactions responsible for different neural behav-
iors. In recent years, however, neuroscientists have developed an
arsenal of “circuit-hacking” molecular tools, such as intersectional
genetics, live imaging, viral transduction (Huang and Zeng, 2013),
and optogenetics and chemogenetics (Rogan and Roth, 2011) to
target and manipulate specific neuronal types and circuits. These
developments have started to facilitate the deconstruction of the
neural pathways responsible for complex, enduring behaviors,

such as memory (Garner et al., 2012), sleep (Jego et al., 2013), and
feeding (Aponte et al., 2011).

Researchers investigating the brain circuits responsible for
circadian control of daily rhythms in mammalian physiology en-
joy an advantageous position in this endeavor because, in con-
trast to other neural pathways, the principal brain area
responsible for this behavior is highly localized and its neuronal
type composition well known (Welsh et al., 2010; Hastings et al.,
2014). Indeed, pioneer lesion experiments in rodents soon estab-
lished the suprachiasmatic nuclei (SCN) of the anterior ventral
hypothalamus as a necessary component of the circadian system,
governing daily rhythms of behavior and hormone release in
mammals (Moore and Eichler, 1972; Stephan and Zucker, 1972).
Moreover, subsequent experiments showed that fetal and adult
SCN grafts were sufficient to (partially) restore circadian rhythms
in SCN-ablated recipient animals and impose on them the genet-
ically specified periodicity of the donor tissue. Thus, the role of
the SCN as the master circadian clock in mammals was estab-
lished (Ralph et al., 1990; Sujino et al., 2003).

The discovery of an underlying intracellular transcription–
translation feedback loop (TTFL), oscillating with a �24 h peri-
odicity in SCN neurons, thus provided an elegant molecular
counterpart to such highly localized neuronal function (Fig. 1A).
The TTFL (for review, see Takahashi et al., 2008), in its simplest
description, revolves around the timed transcription of period
(per) and cryptochrome (cry) genes, activated by BMAL1/CLOCK
dimers, and the subsequent accumulation of Per and Cry pro-
teins that progressively inhibit BMAL1/CLOCK activity. Timely
degradation of Per and Cry proteins subsequently removes the
inhibition from BMAL1/CLOCK and licenses a new �24 h cycle.
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The prominent role of such a cell-autonomous TTFL in SCN
timekeeping was, however, questioned when it appeared clear
that almost all cells and tissues in mammals shared a similar
clockwork (Balsalobre et al., 1998; Welsh et al., 2004). Yet the
SCN alone is capable of both orchestrating daily rhythms across
other tissues in vivo, as well as sustaining persistent and synchro-
nous circadian oscillations when isolated in culture. Moreover,
genetic deletions of several clock genes were shown to have lim-
ited effects in the SCN, in contrast to their debilitating conse-
quences for peripheral tissue oscillators (Liu et al., 2007; Ko et al.,
2010).

In sharp contrast with the shared underlying TTFL molecular
clockwork, both the cytoarchitecture and the intrinsic and dif-
fused connectivity of the SCN are very varied. Numerous neuro-
nal subpopulations secreting various neurotransmitters can be
distinguished within the SCN, such as vasoactive intestinal poly-
peptide (VIP), arginine-vasopressin (AVP), and gastrin-releasing
peptide (GRP) (Abrahamson and Moore, 2001). The spatial dis-
tribution of these subpopulations is remarkably specific and
highly conserved across species, thus suggesting that they may
play differential roles in processing information flow within the
nucleus or in relation to its input/output structure (Leak and
Moore, 2001). In particular, GRP and VIPergic neurons populate
the ventrolateral SCN (core region), which directly receives reti-
nal input, and relay it throughout the entire SCN (through both
ipsilateral and contralateral projections), as well as to other hy-
pothalamic and thalamic areas. In contrast, the AVP subpopula-
tion delineates the shell region, which receives less retinal
innervation than the core (Abrahamson and Moore, 2001) but
may receive inputs from other sources, such as limbic structures
(Moga and Moore, 1997). Intranetwork connectivity patterns are
less well understood, but it is known that the SCN shell receives
dense innervation from VIP neurons and that reciprocal connec-
tions from shell to core are less pronounced (Daikoku et al., 1992;
Romijn et al., 1997). Output from the shell influences visceral
function (Ueyama et al., 1999), REM sleep (Lee et al., 2009), and
timing of the LH surge (Williams et al., 2011).

These considerations have led scientists of the field to focus on
intercellular and circuit properties of SCN timekeeping, armed
with a new arsenal of molecular tools to finally unravel the mech-
anisms that confer its unique role as the master circadian clock.

In this review, we present current work aimed at expanding
our knowledge of the mechanisms that, from intracellular TTFL
clocks to neural connectivity, shape the emergent circuit logic of
the SCN. In particular, the following two sections will highlight
investigations aimed at understanding how SCN circadian pace-
making is intrinsically generated across genes, neural connectiv-
ity, and network control. The final two sections will deal with the
epigenetic and circuit-mediated plasticity of the SCN, responsi-
ble for translating its principal input (light) into coherent adap-
tive circadian outputs. Particular attention will be given to
current research involving live imaging, as well as intersectional
and optogenetic and chemogenetic approaches to reveal causal
relationships within SCN circadian pacemaking. These topics
will feature in a related mini-symposium at the Society for Neu-
roscience Annual Meeting in Washington, DC in November
2014.

From neuronal clocks to SCN circuit encoding of
circadian time
The SCN has three main functions: (1) to define stable circadian
oscillations in the absence of external entraining agents (i.e.,
pacemaking); (2) to synchronize this representation of time to

Figure 1. Encoding circadian time in mammals from genes to behavior. A, A simplified
model of the intracellular molecular clockwork sustaining �24 h oscillations in SCN neurons.
TTFLs, based on E-boxes, are synchronized to circadian oscillations of cytosolic Ca 2� and cAMP,
via CRE boxes. GPCR-mediated peptidergic signaling and synaptic connectivity provide circuit-
derived reinforcement cues to the intracellular clocks, by impinging on the Ca 2� and cAMP
oscillations and CREs. B, Representation of the spatiotemporal wave of clock gene expression
traveling across SCN tissue (frontal view). The anatomical and cellular architecture of the SCN, as
well as the spatiotemporal wave, are preserved in isolated SCN cultures, thus showing them as
intrinsic features of the SCN circuit. C, The intrinsically generated spatiotemporal wave is mod-
ified in vivo by subjective experience of light. Under short day lengths, SCN neurons display a
similar timing of rhythms in protein expression. This phase clustering produces an overall wave-
form with short duration of peak expression. Phase differences among SCN neurons increase
with day length, and this temporal segregation increases peak width at population level.
Changes in the spatiotemporal wave are then translated into adaptive behavioral responses,
such as variations in locomotor activity.
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the solar cycle of light and darkness; and (3) to convey temporal
cues to the rest of the body to sustain appropriately adaptive daily
rhythms of metabolism and behavior. Although these functions
coexist in vivo, the second and third require retinohypothalamic
input to the SCN and output from it, respectively. In contrast,
pacemaking is a remarkably autonomous SCN property. When
SCN tissue is explanted from rodents in organotypic culture, it
can retain structural coherence for months. More importantly, in
these conditions, circadian oscillations in gene expression and
neural activity are also preserved. To follow these oscillations in
living tissue, several mouse models have been created in which
clock genes, such as Per1, Per2, and Cry1, have been fused to
bioluminescent and fluorescent reporters, such as luciferase or
GFP (Kuhlman et al., 2000; Sujino et al., 2003; Yoo et al., 2004;
Maywood et al., 2013). Real-time, long-term imaging of gene
expression of this “circuit in a dish” has greatly expanded our
knowledge of circadian pacemaking in the SCN. In particular, it
has revealed that, even though SCN oscillators are synchronized,
they do not share a common phase: the dorsomedial cells peaking
on average 2–3 h before ventrolateral ones. As a consequence, a
spatiotemporal wave of TTFL gene expression travels across the
tissue, from the dorsomedial aspect toward the ventrolateral re-
gion of the SCN (Fig. 1B) (Yamaguchi et al., 2003; Evans et al.,
2011).

The generation of such a recursive spatiotemporal wave is an
emergent property, specific to the SCN and dependent on synap-
tic integration. Thus, application of TTX to SCN slices to inhibit
voltage-gated sodium channels reduces the amplitude of Per1
oscillations and alters the phase relationships among individual
cells, thereby impairing the coherence of the wave (Yamaguchi et
al., 2003). Similarly, acutely hyperpolarizing SCN neurons with
low extracellular K� dampens the molecular clock by abolishing
the rhythmic expression of Per1 and PER2 (Lundkvist et al.,
2005). Unraveling this link between synaptic activity and the
TTFL is therefore of paramount importance to understand the
intrinsic organization of SCN circuits. Firing rates are synchro-
nized in the SCN, so that neurons fire quickly during the day
(6 –10 Hz) and slowly at night (�1 Hz) (Atkinson et al., 2011;
Colwell, 2011), and animal models have provided convincing
evidence linking the intracellular molecular clock to these firing
rhythms. As an example, the Tau mutation in the clock gene
casein kinase 1� causes a drastic 4 h reduction of the normal 24 h
period of SCN electrical activity because of an acceleration of the
molecular feedback loop (Liu et al., 1997; Meng et al., 2008).
Similarly, SCN neurons from mice heterozygous for a mutation
in Clock have a lengthened period of electrical activity rhythms,
whereas behaviorally arrhythmic Cry1/2 double knock-out mice
also exhibit a complete lack of firing rate rhythms (Albus et al.,
2002). Although these results clearly indicate a necessary connec-
tion between the molecular clock and electrical activity, they do
not, however, show how this interaction would take place, or the
directional causality of it. Indeed, there may be a reciprocal de-
pendence between these two processes.

Per genes have recently been suggested as a possible entry
point to connect synaptic activity to the intracellular TTFL. In
mice expressing GFP driven by Per1 promoter sequences, the
degree of promoter activity positively correlates with spike fre-
quency in individual SCN neurons, both after a nocturnal light
pulse and also during the middle of circadian day, suggesting that
a fixed phase relationship may exist between the molecular clock
and electrical activity (Kuhlman et al., 2000; Quintero et al.,
2003). Moreover, other GPCR pathways involved in SCN time-
keeping, such as GRP or VIP, depend on activation of the endog-

enous Per1 gene to reset SCN spike frequency (Gamble et al.,
2007; Kudo et al., 2013).

A specific feature of per genes compared with cry genes (the
second component of negative feedback) is the presence of
cAMP/Ca 2� Responsive Elements (CRE) in their promoter re-
gions. Intracellular calcium ([Ca 2�]i) and cAMP, which can both
activate CRE sequences, show robust circadian oscillations in
SCN slices (O’Neill et al., 2008; Brancaccio et al., 2013). These
second messengers seem, therefore, ideal mediators to integrate
fast membrane-bound cues, such as neuronal firing and GPCR
signaling to the very slow temporal structure of circadian oscilla-
tions in gene expression, via CREs (Fig. 1A). In particular, the role
of [Ca 2�]i as an input to the TTFL has been recently reconsidered
by using live imaging in SCN slices. Virally delivered, genetically
encoded calcium indicators, either FRET based (Yellow Cama-
leon 3.60) (Enoki et al., 2012a, 2012b) or single wavelength
(GCaMP3) (Brancaccio et al., 2013), have been used in combina-
tion with clock gene bioluminescent reporters to show that cir-
cadian [Ca 2�]i oscillations follow a spatiotemporal wave similar
to that of the TTFL oscillations. Critically, however, the phase of
[Ca 2�]i oscillations precedes the phase of per- and cry-mediated
oscillations, which follow in series according to the presence and
activity of CREs in their promoters (Brancaccio et al., 2013). Such
a temporal structure is consistent with a scenario in which
[Ca 2�]i conveys synaptic and/or paracrine interneuronal cues to
CRE sequences present in per genes, thereby integrating events
happening in the short timescale to the very slow temporal struc-
ture of circadian gene expression. Accordingly, inhibition of
synaptic activity by TTX (Enoki et al., 2012a), as well as chemo-
genetically mediated activation of Gq- and Gi-coupled receptors,
are both capable of disrupting the spatiotemporal organization of
[Ca 2�]i in the SCN, eliciting the previously mentioned reorgani-
zation of the TTFL spatiotemporal wave (Brancaccio et al., 2013).
Remarkably, although the effects of TTX or Gi are reversible, Gq
activation permanently and yet specifically modifies the spatiotem-
poral wave of TTFL activation, thus suggesting a more profound role
for this pathway in determining the internal circuit logic of SCN
pacemaking (Brancaccio et al., 2013).

In work presented at the 2014 Society for Neuroscience An-
nual Meeting, the link between electrical, cytosolic, and molecu-
lar circadian rhythms will be further investigated by using
simultaneous real-time imaging of gene expression, intracellular
calcium, and membrane potential. Moreover, various optoge-
netic and chemogenetic approaches aimed at revealing the causal
relationships between these different aspects of the “extended
clock” will be presented.

The role of glial cells in SCN circadian pacemaking
A much debated and yet largely unanswered question in circa-
dian neurobiology is whether or not glial cells play a role in cir-
cadian timekeeping (Jackson, 2011). Early studies showed high
expression of the astrocytic marker GFAP in the SCN, compared
with surrounding hypothalamic areas. Furthermore, GFAP ex-
pression undergoes high-amplitude daily oscillations in the ham-
ster SCN, which persist in constant darkness (Lavialle and
Servière, 1993). This suggested a possible role for glial cells in
intrinsic SCN circadian pacemaking. Although subsequent
studies in rats confirmed these oscillations and localized them
to the VIP-ergic core region, they failed to reproduce the per-
sistence of such rhythms in constant darkness. It was therefore
proposed that such variations could instead be linked to pho-
tic entrainment of the SCN via retinal afferents (Becquet et al.,
2008; Girardet et al., 2010).
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Understanding whether glial cells do indeed play a role in SCN
intrinsic pacemaking could be of paramount importance to un-
ravel its intrinsic network logic. It is indeed increasingly evident
that the robustness of circadian timekeeping in the SCN cannot
be reduced uniquely to the TTFL but is rather a consequence of
the concerted progression of multiple interlocked cycles of cyto-
solic, energetic, and electrical activity. It is commonly thought
that such cycles are an exclusive property of SCN neurons, when
embedded in the SCN neuronal circuitry. It cannot be excluded,
however, that the numerous glial cells present in this tissue may
also sustain some of these functions. Glial cells modulate both the
energetic and electrical homeostasis of the brain and therefore
seem ideally suited to sense misalignment between the electrical
neuronal activity and the metabolic state of each SCN neuron and
the surrounding ones. The advantage of such a network, when
extended to (glial) nonexcitable cells, could be to protect the SCN
from the naturally occurring electrical noise due to its neuronal
activity (Freeman et al., 2013) that could otherwise desynchro-
nize its oscillators. Feedback from glia could therefore provide a
counteracting homeostatic drive to balance the intrinsic neuro-
nal plasticity of the SCN circuit, which would be necessary to
align body clocks to environmental cues (see below). Such a role
for glial cells in the SCN can, however, only be postulated at the
moment. Indeed, whereas a direct role for glial cells in intrinsic
pacemaking has been shown in flies (Suh and Jackson, 2007), the
evidence in mammals is only indirect: treating rats with fluoroci-
trate, a drug that poisons the Krebs cycle in astrocytes, makes
them arrhythmic (Prosser et al., 1994), and administering anti-
mitotic drugs to SCN slices alters the phase relationship of VIP
and AVP release (Shinohara et al., 1995), the inference being that
this drug compromises astrocytic proliferation in culture.

Cultured glial cells from cerebral cortices of Per2:luc mice
show circadian oscillations that can be entrained by SCN-derived
cues and by drugs acting on CRE sequences via calcium or cAMP
signaling (Prolo et al., 2005). VIP may be responsible for this
effect by CRE activation in astrocytes (Marpegan et al., 2009). As
for the other arm of this interaction (glio-transmission to SCN
neurons), many well-established glio-transmitters (ATP, serine,
glutamate) have been proposed to play a role, but the evidence
remains incomplete (Jackson, 2011). This may be partly due to
the technical difficulties associated with the recording and ma-
nipulation of SCN glial cells in their natural SCN network envi-
ronment, and the potential artifacts associated with pure
astrocytic cultures, in the absence of neuronal feedback.

In the upcoming meeting, new evidence will be presented
showing that glia are indeed required for sustaining network en-
coding of circadian time in the SCN. To achieve this, simultane-
ous imaging of circadian oscillations in neurons and glial cells has
been performed, coupled with intersectional and chemogenetic
manipulations of glial and/or neuronal clocks. Moreover, the
mechanisms of glio-transmission in the SCN, as well as the role of
glia in shaping the spatiotemporal wave of circadian gene expres-
sion, will be addressed.

From SCN circuits to behavior
As previously mentioned, the SCN anatomy and cellular struc-
ture are not homogeneous. Although the vast majority (�95%)
of SCN neurons are GABAergic (Abrahamson and Moore, 2001),
they can be subclassified according to the differential expression
of neuropeptides. Neurons in the ventrolateral aspect of the SCN
(core) express VIP and GRP, whereas neurons in the dorsomedial
region (shell) mainly express AVP (Buijs et al., 1995). VIP and
AVP, secreted by �10% and 20% of SCN neurons, respectively

(Abrahamson and Moore, 2001), act primarily on VPAC2 and
V1a/V1b receptors throughout the SCN (Li et al., 2009; An et al.,
2012).

This organization is conserved across mammals and has led to
the hypothesis that different peptidergic subpopulations may
play different roles, not only in circadian pacemaking, but also in
relationship to SCN input/output organization. In particular,
VIPergic neurons would be mainly involved in integrating light
input through the retinohypothalamic tract and to confer intrin-
sic synchronization of SCN neurons, whereas AVP would am-
plify the endogenous SCN rhythms into coherent behavioral
outputs. Although much is known about retinal signaling to the
SCN (Baver et al., 2008), little is known about how VIP neurons
process light information and relay it to the SCN circuit. Func-
tionally, VIP signaling has a well-defined role in synchronizing
and phase-shifting rhythms within the SCN. In vitro, a single
pulse of VIP phase shifts Per2 gene rhythms and a daily VIP pulse
entrains SCN rhythms. In addition, VIP- or VPAC2R-deficient
mice start their daily activity about 8 h early in a light cycle and
lose rhythmicity in constant darkness because of weakened syn-
chrony among SCN neurons (Harmar et al., 2002; Colwell et al.,
2003; Cutler et al., 2003; Aton et al., 2005; Maywood et al., 2006).

In addition to integrating light input, the SCN must drive
robust rhythmic daily behaviors. Despite its relatively high ex-
pression within the SCN, AVP addition to the SCN in vivo (Albers
et al., 1984) and ex vivo (Watanabe et al., 2000) yields no obvious
effects on circadian behavior or gene expression. Unlike other
SCN cell types, AVP neurons exhibit high-amplitude fluctuations
in circadian firing, neuropeptide expression, and release. Fur-
thermore, a decrease in this high-amplitude rhythm through ag-
ing or individual variability is correlated with decline of rhythmic
behavior (Kalsbeek et al., 2006). Loss of V1a/V1b receptor signal-
ing within the SCN enables faster entrainment to a shifted light
schedule (Yamaguchi et al., 2013), consistent with a role for AVP
signaling in influencing rhythmic behavior.

Although previous research has provided a solid basis for the
roles of the neuropeptides VIP and AVP, it should be noted that
exogenous application of VIP and AVP might not reflect the roles
of these neuronal populations in an intact circuit. The use of
optogenetics allows precise, direct control of neuronal firing both
in vitro and in vivo. By targeting Channelrhodopsin2 to VIPergic
or AVPergic neurons, respectively, and optogenetically tuning
the frequency, duration, and circadian time of the stimulation, it
is possible finally to dissect their specific roles in controlling cir-
cadian behavior.

A plastic clock: circuit-mediated and epigenetically mediated
decoding of light/dark input in the SCN
The SCN acts not only as a daily clock, but also as a calendar
(Hastings, 2001). Indeed, the seasonal changes in day length
(photoperiod) are translated by the SCN into coherent adaptive
behavioral and physiological responses. The SCN displays pho-
toperiodic changes in the overall duration of circadian gene ex-
pression, where the duration of daily electrical firing and TTFL
expression positively correlate with day length. This modulation
of the waveform of SCN rhythms reflects changes in the phase
relationships of its constituent neurons (Messager et al., 1999;
Schaap et al., 2003; Hazlerigg et al., 2005; Inagaki et al., 2007;
Naito et al., 2008; Evans et al., 2013). Thus, the SCN circuit is
capable of encoding individual experience to ensure that circa-
dian rhythms are adjusted to suit the local environment. It does
so through plastic adaptation of its previously described spatio-
temporal wave (Fig. 1C).

Brancaccio et al. • Circadian Timekeeping from Genes to Circuits J. Neurosci., November 12, 2014 • 34(46):15192–15199 • 15195



Recent research that exploits this adaptive plasticity has pro-
vided new insights into the signaling mechanisms that SCN neu-
rons use to communicate with one another. Evans et al. (2013)
showed that SCN neurons dissociated by long day lengths are able
to resynchronize once released from these lighting conditions.
This demonstrated that SCN neurons interact with one another
during network resynchronization to shift their clocks earlier or
later depending on their relative phase within the network. Using
this analytical assay to quantify the strength of SCN coupling, it
was revealed that this resynchronization is dependent on the in-
tegration of multiple, nonredundant signaling pathways (Evans
et al., 2013). VIP signaling was found to be important for both
maintaining and reestablishing synchrony in the SCN network,
which confirms and extends previous work in VIP and VPAC2R
receptor knock-out models and chemogenetic activation of VIP
neurons (Aton et al., 2005; Maywood et al., 2006; Brancaccio et
al., 2013). In the absence of VIP signaling, the ability of SCN
neurons to resynchronize is attenuated, but not completely abol-
ished, suggesting that other intercellular signaling factors also
contribute to this coupling process, consistent with results from
SCN grafting studies (Maywood et al., 2011).

Although GABA signaling synchronizes neurons in cortical
circuits (Buzsáki and Chrobak, 1995; Cobb et al., 1995), its role in
SCN coupling has been difficult to ascertain. Although GABA can
synchronize dissociated SCN neurons (Liu and Reppert, 2000)
and is involved in network communication (Albus et al., 2005;
Han et al., 2012), GABA signaling is not necessary for maintain-
ing synchronization in SCN slices (Aton et al., 2006). A solution
to this puzzling contradiction was provided by showing that
GABA signaling does promote synchrony, but only when the
network is resynchronizing from the highly polarized state (Ev-
ans et al., 2013). Interestingly, GABA signaling interacts with VIP
signaling in either a cooperative or antagonistic manner de-
pending on the state of the network. These results indicate that
environmental lighting conditions not only influence the spa-
tiotemporal organization of the SCN network but also modulate
the signaling mechanisms that SCN neurons use to communicate
with one another. In the upcoming meeting, new data will be
presented that indicate that plasticity in the coupling role of
GABA signaling is associated with changes in the strength and
polarity of GABA responses in the SCN.

The effects of day length on SCN circuit-level properties pose
interesting questions in terms of the adaptive mechanisms that, at
a cellular level, enable SCN neurons to change their reciprocal
phase relationships in response to the variations in light input.
These mechanisms likely involve epigenetic processes directly
controlling gene expression. Epigenetic mechanisms are based
upon chemical modifications of the chromatin and include his-
tone post-translational modifications as well as DNA methyl-
ation (Strahl and Allis, 2000). Extensive studies have shown that
transient or daily changes in histone post-translational modifica-
tion play a role in facilitating or repressing circadian gene activity
(Crosio et al., 2000; Naruse et al., 2004; Ripperger and Schibler,
2006).

Exposing mice to non-24 h light/dark cycles (T-cycles) results
in long-lasting changes of their genetically determined circadian
period, which persist for several weeks in constant conditions, a
phenomenon known as “aftereffect” (Daan and Pittendrigh,
1976; Aton et al., 2004; Molyneux et al., 2008). This model has
recently been used to investigate the involvement of a specific
epigenetic modification, DNA methylation, in mediating such
prolonged circadian plasticity (Azzi et al., 2014). In contrast to
histone modifications, which are transient, DNA methylation

leads to long-lasting changes in gene transcription. This epige-
netic modification is catalyzed by DNA methyltransferases,
which add a methyl group to the C5 position of cytosine, whereas
DNA demethylation mediates its removal (Kohli and Zhang,
2013; Wu and Zhang, 2014). The effect of DNA methylation on
gene activity is context-dependent: for example, methylation of
promoter regions represses transcription, whereas gene body
methylation enhances it (Jones, 2012). Analysis of the methyl-
omes of model organisms has demonstrated that DNA methyl-
ation is very dynamic in response to environmental changes,
particularly in the adult brain. For example, brain DNA methyl-
ation occurs dynamically upon neuronal activation (Guo et al.,
2011), early life stress (Murgatroyd et al., 2009), or in response to
external stimuli (Miller and Sweatt, 2007).

Exposing mice to �24 h light/dark cycles (short T-cycles)
leads to alteration in the global SCN transcriptome. Interestingly,
genome-wide methylation profiling reveals that short T-cycles
also elicit global alterations in DNA methylation in the SCN,
which correlate with the observed transcriptional changes. These
changes are especially observed in genes involved in various as-
pects of neuronal plasticity, such as synaptogenesis and axonal
guidance. Importantly, infusing methyltransferase inhibitors
during entrainment to short T-cycles suppresses the aftereffect.
Furthermore, circadian behavior and DNA methylation dynam-
ics are reversible upon re-entrainment to the original normal
(24 h) T-cycle (Azzi et al., 2014). This observation is consistent
with previous findings that reported dynamic seasonal changes in
DNA methylation at the level of the deiodinase Type III promoter
region in the hamster hypothalamus, which establishes seasonal
reproductive phenotypes (Stevenson and Prendergast, 2013).

Experimental evidence has shown that aberrant lighting can
lead to pathological disorders, including altered mood, cognitive
function deficits, and depression (Salgado-Delgado et al., 2011;
LeGates et al., 2012; Leach et al., 2013; Fonken and Nelson, 2014).
Even though the molecular mechanisms involved are not fully
understood, studies that focused on peripheral clocks in humans
reported that changes in methylation of clock genes occur in
response to various conditions, including shiftwork, sleep depri-
vation, and aging (Zhu et al., 2011; Zhang et al., 2013; Massart et
al., 2014). A better understanding of the DNA methylation dy-
namics in the SCN and its control of peripheral clocks could
therefore provide important new insights into human health and
the treatment of such conditions.

In conclusion, it seems difficult to believe that the activity of a
few thousand neurons in the mouse or human SCN could direct
behavior as complex as that of daily rhythms. Stress to this system
is constant in modern society, and dysfunctions can challenge it
at any level, with exacting consequences for human health (Toh
et al., 2001; Nicholas et al., 2007; McCarthy and Welsh, 2012;
Musiek et al., 2013). We are now unraveling how information
flows in the SCN, through the multiple levels of abstraction (genes,
neural activity, cell types, circuits, behavior) that finally define our
daily life (O’Neill et al., 2013). What we learn in the process will not
only satisfy mere scientific curiosity but will also inform the future
therapeutic paths for human health and well-being.
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