43 research outputs found

    Systematic reappraisal of marsh-orchids native to Scotland

    Get PDF
    © The Author(s), 2023.This article is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.Summary: The intensively studied Eurasian orchid genus Dactylorhiza has become a model system for exploring allopolyploid evolution, yet determining the optimal circumscriptions of, and most appropriate ranks for, its constituent taxa remain highly controversial topics. Here, novel allozyme data and detailed morphometric data for 16 Scottish marsh-orchid populations are interpreted in the context of recent DNA sequencing studies. Despite being derived from the same pair of parental species, the two allopolyploid species that currently occur in Scotland can reliably be distinguished using allozymes, haplotypes, ribotypes or sequences of nuclear genes. A modest range of diverse morphological characters are shown to distinguish the two molecularly-circumscribed species, but they have in the past been obscured by equivalent levels of infraspecific variation in characters rooted in anthocyanin pigments; these characters are better employed for distinguishing infraspecific taxa. Dactylorhiza francis-drucei (formerly D. traunsteinerioides) is confirmed as being distinct from the continental D. traunsteineri/lapponica, probably originating through allopatric isolation once the continental lineage reached Britain. All Scottish populations are attributed to the comparatively small-flowered, anthocyanin-rich subsp. francis-drucei, which includes as a variety the former D. 'ebudensis'; the less anthocyanin-rich subsp. traunsteinerioides is confined to Ireland, North Wales and northern England. In contrast with D. francis-drucei, only a minority of Scottish populations of D. purpurella are attributed to the anthocyanin-rich race, var. cambrensis. This species most likely originated through an allopolyploidy event that occurred comparatively recently within the British Isles, as it contains allozyme alleles distinctive of British rather than continental D. incarnata (its diploid pollen-parent). In contrast, the rare Scottish population of D. incarnata subsp. cruenta shares with its Irish counterparts a continental genotype, and is most likely a recent arrival in Scotland through long-distance dispersal. Among all European allotetraploid dactylorchids, D. purpurella is the species that most closely resembles D. incarnata, both molecularly and morphologically.Peer reviewe

    Genotypic Variation in a Foundation Tree (\u3ci\u3ePopulus tremula\u3c/i\u3e L.) Explains Community Structure of Associated Epiphytes

    Get PDF
    Community genetics hypothesizes that within a foundation species, the genotype of an individual significantly influences the assemblage of dependent organisms. To assess whether these intra-specific genetic effects are ecologically important, it is required to compare their impact on dependent organisms with that attributable to environmental variation experienced over relevant spatial scales. We assessed bark epiphytes on 27 aspen (Populus tremula L.) genotypes grown in a randomized experimental array at two contrasting sites spanning the environmental conditions from which the aspen genotypes were collected. We found that variation in aspen genotype significantly influenced bark epiphyte community composition, and to the same degree as environmental variation between the test sites. We conclude that maintaining genotypic diversity of foundation species may be crucial for conservation of associated biodiversity

    The impact of fungicide treatment and Integrated Pest Management on barley yields:Analysis of a long term field trials database

    Get PDF
    This paper assesses potential for Integrated Pest Management (IPM) techniques to reduce the need for fungicide use without negatively impacting yields. The impacts of three disease management practices of relevance to broad acre crops –disease resistance, forecasting disease pressure, and fungicide use – were analysed to determine impact on yield using a long-term field trials database of Scottish spring barley, with information from experiments across the country regarding yield, disease levels, and fungicide treatment. Due to changes in data collection practices, data from 1996 to 2010 were only available at trial level, while data from 2011 to 2014 were available at plot level. For this reason, data from 1996 to 2014 were analysed using regression models, while a subset of farmer relevant varieties was taken from the 2011–2014 data, and analysed using ANOVA, to provide additional information of particular relevance to current farm practice. While fungicide use reduced disease severity in 51.4%of a farmer-relevant subset of trials run 2011–2014, and yields were decreased by 0.62 t/ha on average, this was not statistically significant in 65% of trials. Fungicide use had only a minor impact on profit in these trials, with an average increase of 4.4% for malting and 4.7% for feed varieties, based on fungicide cost and yield difference; potential savings such as reduced machinery costs were not considered, as these may vary widely. Likewise, the1996–2014 database showed an average yield increase of 0.74 t/ha due to fungicide use, across a wide range of years, sites, varieties, and climatic conditions. A regression model was developed to assess key IPM and site factors which influenced the difference between treated and untreated yields across this 18-year period. Disease resistance, season rainfall, and combined disease severity of the three fungal diseases were found to be significant factors in the model. Sowing only highly resistant varieties and, as technology improves, forecasting disease pressure based on anticipated weather would help to reduce and optimise fungicide use

    Spring phenology shows genetic variation among and within populations in seedlings of Scots pine (Pinus sylvestris L.) in the Scottish Highlands

    Get PDF
    Background: Genetic differentiation in phenotypic traits is often observed among forest tree populations, but less is known about patterns of adaptive variation within populations. Such variation is expected to enhance the survival likelihood of extant populations under climate change. Aims: Scots pine (Pinus sylvestris) occurs over a spatially and temporally heterogeneous landscape in Scotland. Our goal was to examine whether populations had differentiated genetically in timing of bud flush in response to spatial heterogeneity and whether variation was also maintained within populations. Methods: Two common-garden studies, involving maternal families of seedlings from 21 native pinewoods, were established and variation in the trait was measured at the beginning of the second growing season. Results: Populations showed genetic differences in the trait correlated with the length of growing season at their site of origin, but the majority of variation was observed within populations. Populations also differed in their levels of variation in the trait; a pattern that may be influenced by spatial variation in the extent of temporal climate variability. Conclusions: Our findings suggest that populations have adapted to their home environments and that they also have substantial ability to adapt in situ to changes in growing season length

    An interdisciplinary method for assessing IPM potential:Case study in Scottish spring barley

    Get PDF
    A method is proposed which considers Integrated Pest Management (IPM) through several lenses, in order to obtain a more holistic view of the potential for IPM, and is described using a case study of Scottish spring barley. Long-term experimental field trial databases are used to determine which management methods are best suited to the system at hand. Stakeholder engagement provides insight into which of these methods are most likely to be taken up by farmers. Finally, a database of commercial practice allows an estimate of the potential for improving management patterns, based on current levels of IPM uptake across a wider sample of Scottish farmers. Together, these diverse sources of information give a more complete view of a complex system than any individual source could and allow the identification of IPM methods which are robust, practical, and not already in widespread use in this system. Bringing together these sources of information may be of particular value for policy and other decision makers, who need information about strategies which are both practical and likely to have a large positive impact. In the case of Scottish spring barley, there is good potential to reduce the need for fungicide use through the increased use of highly resistant barley varieties

    Cryptic genetic variation and adaptation to waterlogging in Caledonian Scots pine, <i>Pinus sylvestris</i> L.

    Get PDF
    Local adaptation occurs as the result of differential selection among populations. Observations made under common environmental conditions may reveal phenotypic differences between populations with an underlying genetic basis; however, exposure to a contrasting novel environment can trigger release of otherwise unobservable (cryptic) genetic variation. We conducted a waterlogging experiment on a common garden trial of Scots pine, Pinus sylvestris (L.), saplings originating from across a steep rainfall gradient in Scotland. A flood treatment was maintained for approximately 1 year; physiological responses were gauged periodically in terms of photochemical capacity as measured via chlorophyll fluorescence. During the treatment, flooded individuals experienced a reduction in photochemical capacity, Fv/Fm, this reduction being greater for material originating from drier, eastern sites. Phenotypic variance was increased under flooding, and this increase was notably smaller in saplings originating from western sites where precipitation is substantially greater and waterlogging is more common. We conclude that local adaptation has occurred with respect to waterlogging tolerance and that, under the flooding treatment, the greater increase in variability observed in populations originating from drier sites is likely to reflect a relative absence of past selection. In view of a changing climate, we note that comparatively maladapted populations may possess considerable adaptive potential, due to cryptic genetic variation, that should not be overlooked

    Genetic variation for needle traits in Scots pine (Pinus sylvestris L.)

    Get PDF
    The remnants of the Caledonian Native Pinewood are distributed across a relatively narrow geographic area in the Scottish Highlands yet inhabit a steep environmental gradient in terms of rainfall, temperature and altitude. Previous work based on common garden trials has demonstrated that native pine populations (Pinus sylvestris (L.)) exhibit differentiation in terms of growth, phenology and frost resistance. However, despite their important role in plant fitness, no such information is available on leaf traits, which have shown both plastic and adaptive genetic responses to environmental variation in other species. We analysed a subset of 11 needle characters in 192 saplings grown in a population-progeny common garden trial based on seedlots from eight native pinewoods. Narrow-sense heritability (h2) was estimated for each trait and found to be particularly high (1.30 ± 0.33) for resin canal density. The majority of the phenotypic variation found was within populations, although interpopulation differentiation was detected for needle length (ΔAICc = 2.55). Resin canal density was positively correlated with longitude (β = 0.45, ΔAICc = 4.23), whereas stomatal row density was negatively correlated (β =−0.12, ΔAICc = 2.55). These trends may reflect adaptation for differences in moisture availability and altitude between eastern and western populations in Scotland

    Flight of the dragonflies and damselflies

    Get PDF
    This work is a synthesis of our current understanding of the mechanics, aerodynamics and visually mediated control of dragonfly and damselfly flight, with the addition of new experimental and computational data in several key areas. These are: the diversity of dragonfly wing morphologies, the aerodynamics of gliding flight, force generation in flapping flight, aerodynamic efficiency, comparative flight performance and pursuit strategies during predatory and territorial flights. New data are set in context by brief reviews covering anatomy at several scales, insect aerodynamics, neuromechanics and behaviour. We achieve a new perspective by means of a diverse range of techniques, including laser-line mapping of wing topographies, computational fluid dynamics simulations of finely detailed wing geometries, quantitative imaging using particle image velocimetry of on-wing and wake flow patterns, classical aerodynamic theory, photography in the field, infrared motion capture and multi-camera optical tracking of free flight trajectories in laboratory environments. Our comprehensive approach enables a novel synthesis of datasets and subfields that integrates many aspects of flight from the neurobiology of the compound eye, through the aeromechanical interface with the surrounding fluid, to flight performance under cruising and higher-energy behavioural modes

    Scotland’s biodiversity progress to 2020 Aichi Targets:Conserving genetic diversity- development of a national approach for addressing Aichi Biodiversity Target 13 that includes wild species

    Get PDF
    Aichi Target 13 (T13) focuses on the conservation of genetic diversity. •Major challenges in implementing T13 are that the type of genetic diversity to conserve is not clearly defined, and that key issues in genetic conservation vary across different sectors (e.g., forestry vs agriculture vs other species of socio-economic importance). •In Scotland and the UK more widely, baseline mechanisms are well established for assessing and reporting on genetic diversity in species of agricultural importance (e.g., rare livestock breeds, crop wild relatives), and a methodology has been established for ornamental plants. •A new UK Strategy for Forest Genetics Resources was launched in 2019, creating a framework for linking forest trees into T13 reporting. •However, there is no clear strategy to deal with ‘other species of socio-economic importance’ in Scotland, the UK or indeed elsewhere, and addressing this gap is the major focus of this report. •There is a lack of guidance for identifying focal species of socio-economic importance, and no clear mechanism for addressing T13 for these species once they have been identified. •To address this, we have identified a set of criteria for defining terrestrial and freshwater species of socio-economic importance in Scotland, and selected an initial list of 26 species. •The criteria applied were: -National conservation priority wild species. -Species of national cultural importance. -Species providing key ecosystem services. -Species of importance for wild harvesting (food and medicine). -Economically important game species. •We then developed a simple, readily applicable scorecard method for assessing risks to the conservation of genetic diversity in these species. •The scorecard approach is not dependent on prior genetic knowledge, and instead uses structured expert opinion assessments of whether: -Demographic declines are likely to lead to loss of genetic diversity (genetic erosion). -Hybridisation is likely to lead to undesirable replacement of genetic diversity. -Restrictions to regeneration/turnover are likely to impede evolutionary change. •For plant species where seed-banking is a viable mechanism for holding genetic resources ex situ,we also report on the representativeness of these ex situ collections. •Overall, this scorecard provides a mechanism for incorporating ‘other species of socio-economic importance’ into T13 actions and reporting. •Furthermore, its application is not restricted to Aichi T13 as the approach is designed as a generic scorecard for genetic diversity. It is thus relevant to post-2020 CBD targets focusing on genetic diversity. •Future priorities include: -Extension to other species of socio-economic, commercial and cultural importance (with the inclusion of marine species being a particularly high priority). -Harmonising genetic conservation strategies between sectors (drawing on commonalities), whilst minimising disruption of existing well-established methodologies within sectors. -Greater incorporation of genomic data into monitoring genetic diversity (particularly in the agricultural and forestry sectors where data availability is potentially high)

    Evolutionary diversification of new caledonian Araucaria

    Get PDF
    New Caledonia is a global biodiversity hotspot. Hypotheses for its biotic richness suggest either that the island is a ‘museum’ for an old Gondwana biota or alternatively it has developed following relatively recent long distance dispersal and in situ radiation. The conifer genus Araucaria (Araucariaceae) comprises 19 species globally with 13 endemic to this island. With a typically Gondwanan distribution, Araucaria is particularly well suited to testing alternative biogeographic hypotheses concerning the origins of New Caledonian biota. We derived phylogenetic estimates using 11 plastid and rDNA ITS2 sequence data for a complete sampling of Araucaria (including multiple accessions of each of the 13 New Caledonian Araucaria species). In addition, we developed a dataset comprising 4 plastid regions for a wider taxon sample to facilitate fossil based molecular dating. Following statistical analyses to identify a credible and internally consistent set of fossil constraints, divergence times estimated using a Bayesian relaxed clock approach were contrasted with geological scenarios to explore the biogeographic history of Araucaria. The phylogenetic data resolve relationships within Araucariaceae and among the main lineages in Araucaria, but provide limited resolution within the monophyletic New Caledonian species group. Divergence time estimates suggest a Late Cretaceous-Cenozoic radiation of extant Araucaria and a Neogene radiation of the New Caledonian lineage. A molecular timescale for the evolution of Araucariaceae supports a relatively recent radiation, and suggests that earlier (pre-Cenozoic) fossil types assigned to Araucaria may have affinities elsewhere in Araucariaceae. While additional data will be required to adequately resolve relationships among the New Caledonian species, their recent origin is consistent with overwater dispersal following Eocene emersion of New Caledonia but is too old to support a single dispersal from Australia to Norfolk Island for the radiation of the Pacific Araucaria sect. Eutacta clade.Mai Lan Kranitz, Edward Biffin, Alexandra Clark, Michelle L. Hollingsworth, Markus Ruhsam, Martin F. Gardner, Philip Thomas, Robert R. Mill, Richard A. Ennos, Myriam Gaudeul, Andrew J. Lowe, Peter M. Hollingswort
    corecore