14 research outputs found

    Percolation of single-walled carbon nanotubes in ceramic matrix nanocomposites

    Get PDF
    The percolation of carbon nanotubes (CNT) in an electrical insulating ceramic is studied for the first time. The in situ synthesis of the CNT (0.2–25 vol%) by a CCVD route allows to achieve their homogeneous distribution in the spinel matrix. Up to 11 vol% CNT, the DC electrical conductivity (σ) is well fitted by the scaling law of the percolation theory σ=k(p−pc)t with a low percolation threshold pc=0.64 vol%. At the threshold, σ jumps over seven order of magnitude (from 10−10 to 0.0040 S cm−1) and then reaches a maximum at 8.5 S cm−1. The results are discussed in relation with the characteristics of the CNT, their damaging during the hot-pressing at 1300 °C and the microstructure of the composites. CNT-ceramic composites become attractive materials not only for their enhanced mechanical properties, but also for the possibility to tailor the electrical conductivity through the CNT content

    A home-made system for IPCE measurement of standard and dye-sensitized solar cells

    Get PDF
    A home-made system for incident photon-to-electron conversion efficiency (IPCE) characterization, based on a double-beam UV-Vis spectrophotometer, has been set up. In addition to its low cost (compared to the commercially available apparatuses), the double-beam configuration gives the advantage to measure, autonomously and with no need for supplementary equipment, the lamp power in real time, compensating possible variations of the spectral emission intensity and quality, thus reducing measurement times. To manage the optical and electronic components of the system, a custom software has been developed. Validations carried out on a common silicon-based photodiode and on a dye-sensitized solar cell confirm the possibility to adopt this system for determining the IPCE of solar cells, including dye-sensitized ones

    Electrostatic manipulation of piezoelectric fibres using a sharp probe electrode in a dielectric liquid : analysis of the electrohydrodynamic phenomena

    Get PDF
    Micro-assembly techniques have been identified as a major technology ‘pillar’ that will underpin further advancements in integrated micro-and nano-systems. In practice, there is a generic requirement for component parts that are often fragile, or that have been prepared by mutually incompatible processes, to be brought together to make a complete working system. This thesis discusses an electrostatic positioning technique for micro-scale elements that could form the basis of an industrial process. A highly non-uniform field generated between a needle-like upper electrode and a bottom flat electrode can be used to electrostatically capture, displace, and relocate elements into a predefined spatial configuration. The very intense field at the needle tip can facilitate the collection of the material at a precise point. However charge injection and local dielectric breakdown must also be considered as they can induce instability near the tip, and consequently interfere with any picking up action. The principal physical phenomena and potential benefits are analysed and discussed, considering three different configurations to achieve the pick and place operation for a micro-fibre in the needle-plane configuration. The first two are operated on an isolated single fibre lying on a flat bottom electrode, applying respectively a DC or an AC voltage. The third case is that of a group of fibres, and it exploits a dielectrophoretic chain structuring effect to assist in the micro-manipulation technique. Experimentation has focussed on the importance of the charge transfer mechanisms, leading to a model which provides good agreement with the observed behaviour. Moreover, an analysis of the forces exerted on the fibres showed that they arise not only from a polarisation effect, but that there is also an electrophoretic contribution. The viability of the proposed technique has been demonstrated using lead zirconate titanate (PZT rods and carbon fibres).EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Electrostatic manipulation of piezoelectric fibres using a sharp probe electrode in a dielectric liquid: Analysis of the electrohydrodynamic phenomena

    No full text
    Micro-assembly techniques have been identified as a major technology ‘pillar’ that will underpin further advancements in integrated micro-and nano-systems. In practice, there is a generic requirement for component parts that are often fragile, or that have been prepared by mutually incompatible processes, to be brought together to make a complete working system. This thesis discusses an electrostatic positioning technique for micro-scale elements that could form the basis of an industrial process. A highly non-uniform field generated between a needle-like upper electrode and a bottom flat electrode can be used to electrostatically capture, displace, and relocate elements into a predefined spatial configuration. The very intense field at the needle tip can facilitate the collection of the material at a precise point. However charge injection and local dielectric breakdown must also be considered as they can induce instability near the tip, and consequently interfere with any picking up action. The principal physical phenomena and potential benefits are analysed and discussed, considering three different configurations to achieve the pick and place operation for a micro-fibre in the needle-plane configuration. The first two are operated on an isolated single fibre lying on a flat bottom electrode, applying respectively a DC or an AC voltage. The third case is that of a group of fibres, and it exploits a dielectrophoretic chain structuring effect to assist in the micro-manipulation technique. Experimentation has focussed on the importance of the charge transfer mechanisms, leading to a model which provides good agreement with the observed behaviour. Moreover, an analysis of the forces exerted on the fibres showed that they arise not only from a polarisation effect, but that there is also an electrophoretic contribution. The viability of the proposed technique has been demonstrated using lead zirconate titanate (PZT rods and carbon fibres)

    Easy fabrication of aligned PLLA nanofibers-based 2D scaffolds suitable for cell contact guidance studies

    No full text
    An easy, low-cost and fast wet processing-based method named ASB-SANS (Auxiliary Solvent-Based Sublimation-Aided NanoStructuring) has been used to fabricate poly(L-lactic acid) (PLLA) highly ordered and hierarchically organized 2D fibrillar patterns,with fiber widths between 40 and 500 nmand lengths exceeding tens of microns. A clear contact guidance effect of these nanofibrillar scaffolds with respect to HeLa and NIH-3T3 cells growth has been observed, on top of an overall good viability. For NIH-3T3 pronounced elongation of the cells was observed, as well as a remarkable ability of the patterns to guide the extension of pseudopodia. Moreover, SEM imaging revealed filopodia stemming from both sides of the pseudopodia and aligned with the secondary PLLA nanofibrous structures created by the ASB-SANS procedure. These results validate ASB-SANS as a technique capable to provide biocompatible 2D nanofibrillar patterns suitable for studying phenomena of contact guidance (and,more in general, the behavior of cells onto nanofibrous scaffolds), at very lowcosts and in an extremely easy way, accessible to virtually any laboratory

    Tubular Sn-filled carbon nanostructures on ITO: Nanocomposite material for multiple applications

    No full text
    Hollow carbon nanostructures filled by metallic Sn were fabricated by means of chemical vapor deposition on transparent Indium Tin Oxide (ITO). We found no need for catalytic particles, and the growth happens in the temperature range 820\u2013940 K. Upon annealing in an oxygen atmosphere, the carbon skin could be burned out, leaving SnOx pillars on the ITO substrate. The electrical and optical properties of the grown Sn/C and SnOx nanopillars were characterized. This growth strategy is versatile and can suitably be adapted to different substrate materials, provided that ITO can be deposited and annealed at the temperature required for the formation of the nanostructures. The rational control of this simple growth process and the lack of deposited external catalysts allow the fabrication of ordered, possibly, vertically aligned nanopillars over large areas, with tunable morphological, electrical and optical characteristics. This approach is envisaged as a promising path to develop energy generation and storage electrodes or chemical sensors with improved efficiency

    Accelerating Battery Characterization Using Neutron and Synchrotron Techniques: Toward a Multi-Modal and Multi-Scale Standardized Experimental Workflow

    No full text
    Li-ion batteries are the essential energy-storage building blocks of modern society. However, producing ultra-high electrochemical performance in safe and sustainable batteries for example, e-mobility, and portable and stationary applications, demands overcoming major technological challenges. Materials engineering and new chemistries are key aspects to achieving this objective, intimately linked to the use of advanced characterization techniques. In particular, operando investigations are currently attracting enormous interest. Synchrotron- and neutron-based bulk techniques are increasingly employed as they provide unique insights into the chemical, morphological, and structural changes inside electrodes and electrolytes across multiple length scales with high time/spatial resolutions. However, data acquisition, data analysis, and scientific outcomes must be accelerated to increase the overall benefits to the academic and industrial communities, requiring a paradigm shift beyond traditional single-shot, sophisticated experiments. Here a multi-scale and multi-technique integrated workflow is presented to enhance bulk characterization, based on standardized and automated data acquisition and analysis for high-throughput and high-fidelity experiments, the optimization of versatile and tunable cells, as well as multi-modal correlative characterization. Furthermore, new mechanisms, methods and organizations such as artificial intelligence-aided modeling-driven strategies, coordinated beamtime allocations, and community-unified infrastructures are discussed in order to highlight perspectives in battery research at large scale facilities.RST/Storage of Electrochemical EnergyElectrical Engineering, Mathematics and Computer Scienc

    Intermolecular hydrogen bonding and molecular orbital distortion in 4-hydroxycyanobenzene investigated by X-ray spectroscopy

    No full text
    Electronic structure of 4-hydroxycyanobenzene in the gas phase, thick films, and single crystals has been investigated by X-ray photoemission spectroscopy (XPS) and near edge X-ray absorption fine structure spectroscopy (NEXAFS). We have used resonant photoemission spectroscopy (RESPES) to identify the symmetry and atomic localization of the occupied and unoccupied molecular orbitals for the free molecule. Upon condensation into a thick film, we find XPS energy shifts in opposite directions for the oxygen and nitrogen core levels, consistent with the formation of an intermolecular hydrogen bond. This interaction is also accompanied by a significant spatial distortion of the lowest unoccupied molecular orbital that is displaced from the nitrogen atom, as indicated by the RESPES measurements. Thick films and single crystals display the same dichroism in polarization dependent NEXAFS, indicating that the intermolecular hydrogen bonding also steers the molecular assembly into a preferred molecular orientation

    Accelerating Battery Characterization Using Neutron and Synchrotron Techniques : Toward a Multi-Modal and Multi-Scale Standardized Experimental Workflow

    Get PDF
    Li-ion batteries are the essential energy-storage building blocks of modern society. However, producing ultra-high electrochemical performance in safe and sustainable batteries for example, e-mobility, and portable and stationary applications, demands overcoming major technological challenges. Materials engineering and new chemistries are key aspects to achieving this objective, intimately linked to the use of advanced characterization techniques. In particular, operando investigations are currently attracting enormous interest. Synchrotron- and neutron-based bulk techniques are increasingly employed as they provide unique insights into the chemical, morphological, and structural changes inside electrodes and electrolytes across multiple length scales with high time/spatial resolutions. However, data acquisition, data analysis, and scientific outcomes must be accelerated to increase the overall benefits to the academic and industrial communities, requiring a paradigm shift beyond traditional single-shot, sophisticated experiments. Here a multi-scale and multi-technique integrated workflow is presented to enhance bulk characterization, based on standardized and automated data acquisition and analysis for high-throughput and high-fidelity experiments, the optimization of versatile and tunable cells, as well as multi-modal correlative characterization. Furthermore, new mechanisms, methods and organizations such as artificial intelligence-aided modeling-driven strategies, coordinated beamtime allocations, and community-unified infrastructures are discussed in order to highlight perspectives in battery research at large scale facilities
    corecore