650 research outputs found

    Punch-through jets in A+AA+A collisions at RHIC/LHC

    Full text link
    High pTp_T single and dihadron production is studied within a NLO pQCD parton model with jet quenching in high energy A+AA+A collisions at the RHIC/LHC energy. A simultaneous χ2\chi^2-fit to both single and dihadron spectra can be achieved within a narrow range of energy loss parameter. Punch-through jets are found to result in the dihadron suppression factor slightly more sensitive to medium than the single hadron suppression factor at RHIC. Such jets at LHC are found to dominate high pTp_T dihadron production and the resulting dihadron spectra are more sensitive to the initial parton distribution functions than the single hadron spectra.Comment: 4 pages, 4 figures, proceedings for the 20th international conference on ultra-relativistic nucleus-nucleus collisions (QM2008), Jaipur, India, February 4-10, 200

    A NLO analysis on fragility of dihadron tomography in high energy AAAA collisions

    Full text link
    The dihadron spectra in high energy AAAA collisions are studied within the NLO pQCD parton model with jet quenching taken into account. The high pTp_T dihadron spectra are found to be contributed not only by jet pairs close and tangential to the surface of the dense matter but also by punching-through jets survived at the center while the single hadron high pTp_T spectra are only dominated by surface emission. Consequently, the suppression factor of such high-pTp_T hadron pairs is found to be more sensitive to the initial gluon density than the single hadron suppression factor.Comment: 4 pages, 4 figures, proceedings for the 19th international Conference on ultra-relativistic nucleus-nucleus collisions (QM2006), Shanghai, China, November 14-20, 200

    Providing Remote Access to Robotic Telescopes by Adopting Grid Technology

    No full text
    We present an architecture for enabling remote access to robotic telescopes through the adoption of Grid technology. With this architecture, Internet connected robotic telescopes form a global network and are controlled by a global resource management system (scheduler), similar to individual compute resources in a Grid. By virtualizing the access to these telescope resources and by describing them and observation requests in a generic language (RTML). Astronomers are provided with an interface to a telescope network, from which they can get the appropriate resources for their observations. Moreover, new kinds of coordinated observations become feasible, such as multi-wavelength campaigns or immediate and continuous monitoring of transient astronomical events. This paper describes the architecture, the processing of observation requests and new research topics in a global network of robotic telescopes

    Dihadron Tomography of High-Energy Nuclear Collisions in NLO pQCD

    Get PDF
    Back-to-back dihadron spectra in high-energy heavy-ion collisions are studied within the next-to-leading order (NLO) perturbative QCD parton model with jet quenching incorporated via modified jet fragmentation functions due to radiative parton energy loss in dense medium. The experimentally observed appearance of back-to-back dihadrons at high pTp_T is found to originate mainly from jet pairs produced close and tangential to the surface of the dense matter. However, a substantial fraction of observed high pTp_T dihadrons also comes from jets produced at the center of the medium after losing finite amount of energy. Consequently, the suppression factor of such high-pTp_T hadron pairs is found to be more sensitive to the initial gluon density than the single hadron spectra that are dominated by surface emission. A simultaneous χ2\chi^2-fit to both the single and dihadron spectra can be achieved within a narrow range of the energy loss parameters ϵ0=1.62.1\epsilon_0=1.6-2.1 GeV/fm. Because of the flattening of the initial jet production spectra, high pTp_T dihadrons at the LHC energy are found to be more robust as probes of the dense medium.Comment: 4 pages in revtex with 5 figures, final version in PRL The numerical tables of the NLO single and dihadron spectra used in this manuscript can be downloaded from ftp://www-nsdth.lbl.gov/pub/xnwang/dihadron

    A robust method to identify cyclone tracks from gridded data

    Get PDF
    A system to derive tracks of barometric minima is presented. It is deliberately using coarse input data in space (order of 2°×2°) and time (6-hourly to daily) as well as information from just one geopotential level. It is argued that the results are, for one robust in the sense of an assumption of the IMILAST Project that the use of as simple as possible metrics should be strived for and for two tailored to the input from reanalyses and GCMs. The methodology presented is a necessary first step towards an automated storm track recognition scheme which will be employed in a second paper to study the future development of atmospheric dynamics in a changing climate. The process towards obtaining storm tracks is two-fold. In its first step cyclone centers are being identified. The performance of this step requires the existence of closed isolines, i.e., a topology in which a grid-point is surrounded by neighbours which all exhibit higher geopotential. The usage of this topology requirement as well as the constraint of coarse data may lead, though, to limitations in identifying centers in geopotential fields with shallow gradients that may occur in the summer months; moreover, some centers may potentially be missed in case of a configuration in which a small scale storm is located at the perimeter of a deep and very large low (a kind of "dent in a crater wall"). The second step of the process strings the identified cyclone centers together in a meaningful way to form tracks. By way of several examples the capability to identify known storm tracks is shown

    STAT-IMM, a statistical approach to determine local and background contributions to PM 10 levels

    Get PDF
    Abstract. When studying concentrations of particulate matter with a size of 10 µm or below (PM 10 ), measured locally, it becomes evident that two main portions need to be quantified: The concentration produced by sources in the vicinity of the station and the long range transports. The traditional approaches include analyses of the components of PM 10 , comparisons upwind and downwind of a station, investigation of trajectories and complex chemical transport modelling. The development of an independent strategy which makes use of statistical methods, including regression and correlation analysis is a reasonable alternative. This method, presented here, does not apply the concept of PM 10 sources, but, rather, analyzes the relations between times series of PM 10 measurements and atmospheric properties. It is applied to identify the shares of the local portion and the large-scale background plus a stochastic portion that cannot be attributed to either of the two. Using regression analysis, a set of objectively chosen meteorological parameters is used to reconstruct the local PM 10 measurement series, defining the local portion. This weather-dependent part of the series is then removed and the residuum, which contains the large-scale PM 10 background and a stochastic portion is analyzed further with correlations. Results are shown for a three-year set of data which includes well over 250 PM 10 stations across Germany. The data is analyzed according to different stratifications, such as the PM 10 load and the wind direction as well as for the data set as a whole. In a further development of the method, a study of PM 10 transports across several border sections is shown

    Photo-astrometric distances, extinctions, and astrophysical parameters for Gaia DR2 stars brighter than G = 18

    Get PDF
    Combining the precise parallaxes and optical photometry delivered by Gaia's second data release (Gaia DR2) with the photometric catalogues of PanSTARRS-1, 2MASS, and AllWISE, we derive Bayesian stellar parameters, distances, and extinctions for 265 million stars brighter than G=18. Because of the wide wavelength range used, our results substantially improve the accuracy and precision of previous extinction and effective temperature estimates. After cleaning our results for both unreliable input and output data, we retain 137 million stars, for which we achieve a median precision of 5% in distance, 0.20 mag in V-band extinction, and 245 K in effective temperature for G<14, degrading towards fainter magnitudes (12%, 0.20 mag, and 245 K at G=16; 16%, 0.23 mag, and 260 K at G=17, respectively). We find a very good agreement with the asteroseismic surface gravities and distances of 7000 stars in the Kepler, the K2-C3, and the K2-C6 fields, with stellar parameters from the APOGEE survey, as well as with distances to star clusters. Our results are available through the ADQL query interface of the Gaia mirror at the Leibniz-Institut f\"{u}r Astrophysik Potsdam (gaia.aip.de) and as binary tables at data.aip.de. As a first application, in this paper we provide distance- and extinction-corrected colour-magnitude diagrams, extinction maps as a function of distance, and extensive density maps, demonstrating the potential of our value-added dataset for mapping the three-dimensional structure of our Galaxy. In particular, we see a clear manifestation of the Galactic bar in the stellar density distributions, an observation that can almost be considered a direct imaging of the Galactic bar.Comment: 25 pages, 23 figures + appendix, accepted for publication in A&A. Data (doi:10.17876/gaia/dr.2/51) are available through ADQL queries at gaia.aip.d

    Shear viscosity of hot scalar field theory in the real-time formalism

    Get PDF
    Within the closed time path formalism a general nonperturbative expression is derived which resums through the Bethe-Salpter equation all leading order contributions to the shear viscosity in hot scalar field theory. Using a previously derived generalized fluctuation-dissipation theorem for nonlinear response functions in the real-time formalism, it is shown that the Bethe-Salpeter equation decouples in the so-called (r,a) basis. The general result is applied to scalar field theory with pure lambda*phi**4 and mixed g*phi**3+lambda*phi**4 interactions. In both cases our calculation confirms the leading order expression for the shear viscosity previously obtained in the imaginary time formalism.Comment: Expanded introduction and conclusions. Several references and a footnote added. Fig.5 and its discussion in the text modified to avoid double counting. Signs in Eqs. (45) and (53) correcte
    corecore