362 research outputs found

    Two Amino Acid Changes at the N-Terminus of Transmissible Gastroenteritis Coronavirus Spike Protein Result in the Loss of Enteric Tropism

    Get PDF
    AbstractTo study the molecular basis of TGEV tropism, a collection of recombinants between the PUR46-MAD strain of transmissible gastroenteritis coronavirus (TGEV) infecting the enteric and respiratory tracts and the PTV strain, which only infects the respiratory tract, was generated. The recombinant isolation frequency was about 10−9recombinants per nucleotide and was 3.7-fold higher at the 5′-end of the S gene than in other areas of the genome. Thirty recombinants were plaque purified and characterized phenotypically and genetically. All recombinant viruses had a single crossover and had inherited the 5′- and 3′-halves of their genome from the enteric and respiratory parents, respectively. Recombinant viruses were classified into three groups, named 1 to 3, according to the location of the crossover. Group 1 recombinants had the crossover in the S gene, while in Groups 2 and 3 the crossovers were located in ORF1b and ORF1a, respectively. The tropism of the recombinants was studied. Recombinants of Group 1 had enteric and respiratory tropism, while Group 2 recombinants infected the respiratory, but not the enteric, tract. Viruses of both groups differed by two nucleotide changes at positions 214 and 655. Both changes may be in principle responsible for the loss of enteric tropism but only the change in nucleotide 655 was specifically found in the respiratory isolates and most likely this single nucleotide change, which leads to a substitution in amino acid 219 of the S protein, was responsible for the loss of enteric tropism in the closely related PUR-46 isolates. The available data indicate that in order to infect enteric tract cells with TGEV, two different domains of the S protein, mapping between amino acids 522 and 744 and around amino acid 219, respectively, are involved. The first domain binds to porcine aminopeptidase N, the cellular receptor for TGEV. In the other domain maps a second factor of undefined nature but which may be the binding site for a coreceptor essential for the enteric tropism of TGEV

    In vitro and in vivo expression of foreign genes by transmissible gastroenteritis coronavirus-derived minigenomes

    Get PDF
    A helper-dependent expression system based on transmissible gastroenteritis coronavirus (TGEV) has been developed using a minigenome of 3·9 kb (M39). Expression of the reporter gene {beta}-glucuronidase (GUS) (2–8 µg per 106 cells) and the porcine respiratory and reproductive syndrome virus (PRRSV) ORF5 (1–2 µg per 106 cells) has been shown using a TGEV-derived minigenome. GUS expression levels increased about eightfold with the m.o.i. and were maintained for more than eight passages in cell culture. Nevertheless, instability of the GUS and ORF5 subgenomic mRNAs was observed from passages five and four, respectively. About a quarter of the cells in culture expressing the helper virus also produced the reporter gene as determined by studying GUS mRNA production by in situ hybridization or immunodetection to visualize the protein synthesized. Expression of GUS was detected in the lungs, but not in the gut, of swine immunized with the virus vector. Around a quarter of lung cells showing replication of the helper virus were also positive for the reporter gene. Interestingly, strong humoral immune responses to both GUS and PRRSV ORF5 were induced in swine with this virus vector. The large cloning capacity and the tissue specificity of the TGEV-derived minigenomes suggest that these virus vectors are very promising for vaccine development

    Vaccines to prevent severe acute respiratory syndrome coronavirus-induced disease

    Get PDF
    An important effort has been performed after the emergence of severe acute respiratory syndrome (SARS) epidemic in 2003 to diagnose and prevent virus spreading. Several types of vaccines have been developed including inactivated viruses, subunit vaccines, virus-like particles (VLPs), DNA vaccines, heterologous expression systems, and vaccines derived from SARS-CoV genome by reverse genetics. This review describes several aspects essential to develop SARS-CoV vaccines, such as the correlates of protection, virus serotypes, vaccination side effects, and bio-safeguards that can be engineered into recombinant vaccine approaches based on the SARS-CoV genome. The production of effective and safe vaccines to prevent SARS has led to the development of promising vaccine candidates, in contrast to the design of vaccines for other coronaviruses, that in general has been less successful. After preclinical trials in animal models, efficacy and safety evaluation of the most promising vaccine candidates described has to be performed in humans

    Analysis of SARS-CoV E protein ion channel activity by tuning the protein and lipid charge

    Get PDF
    A partial characterization of the ion channels formed by the SARS coronavirus (CoV) envelope (E) protein was previously reported (C. Verdiá-Báguena et al., 2012 [12]). Here, we provide new significant insights on the involvement of lipids in the structure and function of the CoV E protein channel on the basis of three se- ries of experiments. First, reversal potential measurements over a wide range of pH allow the dissection of the contributions to channel selectivity coming from ionizable residues of the protein transmembrane do- main and also from the negatively charged groups of diphytanoyl phosphatidylserine (DPhPS) lipid. The cor- responding effective pKas are consistent with the model pKas of the acidic residue candidates for titration. Second, the change of channel conductance with salt concentration reveals two distinct regimes (Donnan-controlled electrodiffusion and bulk-like electrodiffusion) fully compatible with the outcomes of selectivity experiments. Third, by measuring channel conductance in mixtures of neutral diphytanoyl phos- phatidylcholine (DPhPC) lipids and negatively charged DPhPS lipids in low and high salt concentrations we conclude that the protein–lipid conformation in the channel is likely the same in charged and neutral lipids. Overall, the whole set of experiments supports the proteolipidic structure of SARS-CoV E channels and ex- plains the large difference in channel conductance observed between neutral and charged membranes

    Coronavirus E protein forms ion channels with functionally and structurally-involved membrane lipids

    Get PDF
    Coronavirus (CoV) envelope (E) protein ion channel activity was determined in channels formed in planar lipid bilayers by peptides representing either the transmembrane domain of severe acute respiratory syndrome CoV (SARS-CoV) E protein, or the full-length E protein. Both of them formed a voltage independent ion conductive pore with symmetric ion transport properties. Mutations N15A and V25F located in the transmembrane domain prevented the ion conductivity. E protein derived channels showed no cation preference in non-charged lipid membranes, whereas they behaved as pores with mild cation selectivity in negatively-charged lipid membranes. The ion conductance was also controlled by the lipid composition of the membrane. Lipid charge also regulated the selectivity of a HCoV-229E E protein derived peptide. These results suggested that the lipids are functionally involved in E protein ion channel activity, forming a protein–lipid pore, a novel concept for CoV E protein ion channel entity

    Neurohormonal activation induces intracellular iron deficiency and mitochondrial dysfunction in cardiac cells

    Get PDF
    Cèl·lula cardíaca; Deficiència de ferro; Activació neurohormonalCardiac cell; Iron deficiency; Neurohormonal activationCélula cardíaca; Deficiencia de hierro; Activación neurohormonalBackground Iron deficiency (ID) is common in patients with heart failure (HF) and is associated with poor outcomes, yet its role in the pathophysiology of HF is not well-defined. We sought to determine the consequences of HF neurohormonal activation in iron homeostasis and mitochondrial function in cardiac cells. Methods HF was induced in C57BL/6 mice by using isoproterenol osmotic pumps and embryonic rat heart-derived H9c2 cells were subsequently challenged with Angiotensin II and/or Norepinephrine. The expression of several genes and proteins related to intracellular iron metabolism were assessed by Real time-PCR and immunoblotting, respectively. The intracellular iron levels were also determined. Mitochondrial function was analyzed by studying the mitochondrial membrane potential, the accumulation of radical oxygen species (ROS) and the adenosine triphosphate (ATP) production. Results Hearts from isoproterenol-stimulated mice showed a decreased in both mRNA and protein levels of iron regulatory proteins, transferrin receptor 1, ferroportin 1 and hepcidin compared to control mice. Furthermore, mitoferrin 2 and mitochondrial ferritin were also downregulated in the hearts from HF mice. Similar data regarding these key iron regulatory molecules were found in the H9c2 cells challenged with neurohormonal stimuli. Accordingly, a depletion of intracellular iron levels was found in the stimulated cells compared to non-stimulated cells, as well as in the hearts from the isoproterenol-induced HF mice. Finally, neurohormonal activation impaired mitochondrial function as indicated by the accumulation of ROS, the impaired mitochondrial membrane potential and the decrease in the ATP levels in the cardiac cells. Conclusions HF characteristic neurohormonal activation induced changes in the regulation of key molecules involved in iron homeostasis, reduced intracellular iron levels and impaired mitochondrial function. The current results suggest that iron could be involved in the pathophysiology of HF.This work was funded by the following Grants: unrestricted grant from Vifor Pharma and Basic Research Competitive Grant in Cardiology from the Spanish Society of Cardiology 2015

    Severe Acute Respiratory Syndrome Coronavirus Envelope Protein Ion Channel Activity Promotes Virus Fitness and Pathogenesis

    Get PDF
    Deletion of Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) envelope (E) gene attenuates the virus. E gene encodes a small multifunctional protein that possesses ion channel (IC) activity, an important function in virus-host interaction. To test the contribution of E protein IC activity in virus pathogenesis, two recombinant mouse-adapted SARSCoVs, each containing one single amino acid mutation that suppressed ion conductivity, were engineered. After serial infections, mutant viruses, in general, incorporated compensatory mutations within E gene that rendered active ion channels. Furthermore, IC activity conferred better fitness in competition assays, suggesting that ion conductivity represents an advantage for the virus. Interestingly, mice infected with viruses displaying E protein IC activity, either with the wild-type E protein sequence or with the revertants that restored ion transport, rapidly lost weight and died. In contrast, mice infected with mutants lacking IC activity, which did not incorporate mutations within E gene during the experiment, recovered from disease and most survived. Knocking down E protein IC activity did not significantly affect virus growth in infected mice but decreased edema accumulation, the major determinant of acute respiratory distress syndrome (ARDS) leading to death. Reduced edema correlated with lung epithelia integrity and proper localization of Na+ /K+ ATPase, which participates in edema resolution. Levels of inflammasome-activated IL-1b were reduced in the lung airways of the animals infected with viruses lacking E protein IC activity, indicating that E protein IC function is required for inflammasome activation. Reduction of IL-1b was accompanied by diminished amounts of TNF and IL-6 in the absence of E protein ion conductivity. All these key cytokines promote the progression of lung damage and ARDS pathology. In conclusion, E protein IC activity represents a new determinant for SARS-CoV virulence

    A live attenuated severe acute respiratory syndrome coronavirus is immunogenic and efficacious in Golden Syrian hamsters

    Get PDF
    The immunogenicity and protective efficacy of a live attenuated vaccine consisting of a recombinant severe acute respiratory syndrome (SARS) coronavirus lacking the E gene (rSARS-CoV-ΔE) were studied using hamsters. Hamsters immunized with rSARS-CoV-ΔE developed high serum-neutralizing antibody titers and were protected from replication of homologous (SARS-CoV Urbani) and heterologous (GD03) SARS-CoV in the upper and lower respiratory tract. rSARS-CoV-ΔE-immunized hamsters remained active following wild-type virus challenge, while mock-immunized hamsters displayed decreased activity. Despite being attenuated in replication in the respiratory tract, rSARS-CoV-ΔE is an immunogenic and efficacious vaccine in hamsters.This research was supported in part by the Intramural Research Program of the NIH, NIAID; by NIH AID AI059136; and by the European Community (projects DISSECT SP22-CT-2004-511060 and Rivigene SSPE-CT-2005-022639)

    Severe acute respiratory syndrome coronavirus E protein transports calcium ions and activates the NLRP3 inflammasome

    Get PDF
    Severe acute respiratory syndrome coronavirus (SARS-CoV) envelope (E) protein is a viroporin involved in virulence. E protein ion channel (IC) activity is specifically correlated with enhanced pulmonary damage, edema accumulation and death. IL-1β driven proinflammation is associated with those pathological signatures, however its link to IC activity remains unknown. In this report, we demonstrate that SARS-CoV E protein forms protein–lipid channels in ERGIC/Golgi membranes that are permeable to calcium ions, a highly relevant feature never reported before. Calcium ions together with pH modulated E protein pore charge and selectivity. Interestingly, E protein IC activity boosted the activation of the NLRP3 inflammasome, leading to IL-1β overproduction. Calcium transport through the E protein IC was the main trigger of this process. These findings strikingly link SARS-CoV E protein IC induced ionic disturbances at the cell level to immunopathological consequences and disease worsening in the infected organism
    corecore