167 research outputs found

    VCAM-1 and VLA-4 Modulate Dendritic Cell IL-12p40 Production in Experimental Visceral Leishmaniasis

    Get PDF
    Vascular cell adhesion molecule-1 (VCAM-1) interacts with its major ligand very late antigen-4 (VLA-4) to mediate cell adhesion and transendothelial migration of leukocytes. We report an important role for VCAM-1/VLA-4 interactions in the generation of immune responses during experimental visceral leishmaniasis caused by Leishmania donovani. Our studies demonstrate that these molecules play no direct role in the recruitment of leukocytes to the infected liver, but instead contribute to IL-12p40-production by splenic CD8+ dendritic cells (DC). Blockade of VCAM-1/VLA-4 interactions using whole antibody or anti-VCAM-1 Fab′ fragments reduced IL-12p40 mRNA accumulation by splenic DC 5 hours after L. donovani infection. This was associated with reduced anti-parasitic CD4+ T cell activation in the spleen and lowered hepatic IFNγ, TNF and nitric oxide production by 14 days post infection. Importantly, these effects were associated with enhanced parasite growth in the liver in studies with either anti-VCAM-1 or anti-VLA-4 antibodies. These data indicate a role for VCAM-1 and VLA-4 in DC activation during infectious disease

    Critical Roles for LIGHT and Its Receptors in Generating T Cell-Mediated Immunity during Leishmania donovani Infection

    Get PDF
    LIGHT (TNFSF14) is a member of the TNF superfamily involved in inflammation and defence against infection. LIGHT signals via two cell-bound receptors; herpes virus entry mediator (HVEM) and lymphotoxin-beta receptor (LTβR). We found that LIGHT is critical for control of hepatic parasite growth in mice with visceral leishmaniasis (VL) caused by infection with the protozoan parasite Leishmania donovani. LIGHT-HVEM signalling is essential for early dendritic cell IL-12/IL-23p40 production, and the generation of IFNγ- and TNF-producing T cells that control hepatic infection. However, we also discovered that LIGHT-LTβR interactions suppress anti-parasitic immunity in the liver in the first 7 days of infection by mechanisms that restrict both CD4+ T cell function and TNF-dependent microbicidal mechanisms. Thus, we have identified distinct roles for LIGHT in infection, and show that manipulation of interactions between LIGHT and its receptors may be used for therapeutic advantage

    Visceral Leishmaniasis Relapse in Southern Sudan (1999–2007): A Retrospective Study of Risk Factors and Trends

    Get PDF
    Visceral leishmaniasis (kala-azar) caused by Leishmania donovani is spread from person to person by Phlebotomus sandflies. Major epidemics of visceral leishmaniasis have occurred in Southern Sudan during the 20th century. The worst of these killed 100,000 people in the western Upper Nile area of Southern Sudan from 1984–1994, a loss of one-third of the population. Médecins Sans Frontières has treated 40,000 kala-azar patients in Southern Sudan since the late 1980's. In this study we used routinely collected clinical data to investigate why some patients relapse after treatment. We found that patients with severely enlarged spleens (splenomegaly) are more likely to relapse. Patients treated for 17 days with a combination of two drugs (sodium stibogluconate and paromomycin) were more likely to relapse (but less likely to die) than patients treated for 30 days with a single drug (sodium stibogluconate). However, the transition from sodium stibogluconate to the sodium stibogluconate/paromomycin combination as standard treatment between 2001–2003 has not led to a significant increase in visceral leishmaniasis relapse

    Recombinant human erythropoietin increases survival and reduces neuronal apoptosis in a murine model of cerebral malaria

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cerebral malaria (CM) is an acute encephalopathy with increased pro-inflammatory cytokines, sequestration of parasitized erythrocytes and localized ischaemia. In children CM induces cognitive impairment in about 10% of the survivors. Erythropoietin (Epo) has – besides of its well known haematopoietic properties – significant anti-inflammatory, antioxidant and anti-apoptotic effects in various brain disorders. The neurobiological responses to exogenously injected Epo during murine CM were examined.</p> <p>Methods</p> <p>Female C57BL/6j mice (4–6 weeks), infected with <it>Plasmodium berghei </it>ANKA, were treated with recombinant human Epo (rhEpo; 50–5000 U/kg/OD, i.p.) at different time points. The effect on survival was measured. Brain pathology was investigated by TUNEL (Terminal deoxynucleotidyl transferase (TdT)-mediated deoxyuridine triphosphate (dUTP)-digoxigenin nick end labelling), as a marker of apoptosis. Gene expression in brain tissue was measured by real time PCR.</p> <p>Results</p> <p>Treatment with rhEpo increased survival in mice with CM in a dose- and time-dependent manner and reduced apoptotic cell death of neurons as well as the expression of pro-inflammatory cytokines in the brain. This neuroprotective effect appeared to be independent of the haematopoietic effect.</p> <p>Conclusion</p> <p>These results and its excellent safety profile in humans makes rhEpo a potential candidate for adjunct treatment of CM.</p

    IP-10-Mediated T Cell Homing Promotes Cerebral Inflammation over Splenic Immunity to Malaria Infection

    Get PDF
    Plasmodium falciparum malaria causes 660 million clinical cases with over 2 million deaths each year. Acquired host immunity limits the clinical impact of malaria infection and provides protection against parasite replication. Experimental evidence indicates that cell-mediated immune responses also result in detrimental inflammation and contribute to severe disease induction. In both humans and mice, the spleen is a crucial organ involved in blood stage malaria clearance, while organ-specific disease appears to be associated with sequestration of parasitized erythrocytes in vascular beds and subsequent recruitment of inflammatory leukocytes. Using a rodent model of cerebral malaria, we have previously found that the majority of T lymphocytes in intravascular infiltrates of cerebral malaria-affected mice express the chemokine receptor CXCR3. Here we investigated the effect of IP-10 blockade in the development of experimental cerebral malaria and the induction of splenic anti-parasite immunity. We found that specific neutralization of IP-10 over the course of infection and genetic deletion of this chemokine in knockout mice reduces cerebral intravascular inflammation and is sufficient to protect P. berghei ANKA-infected mice from fatality. Furthermore, our results demonstrate that lack of IP-10 during infection significantly reduces peripheral parasitemia. The increased resistance to infection observed in the absence of IP-10-mediated cell trafficking was associated with retention and subsequent expansion of parasite-specific T cells in spleens of infected animals, which appears to be advantageous for the control of parasite burden. Thus, our results demonstrate that modulating homing of cellular immune responses to malaria is critical for reaching a balance between protective immunity and immunopathogenesis

    A major genetic locus in <i>Trypanosoma brucei</i> is a determinant of host pathology

    Get PDF
    The progression and variation of pathology during infections can be due to components from both host or pathogen, and/or the interaction between them. The influence of host genetic variation on disease pathology during infections with trypanosomes has been well studied in recent years, but the role of parasite genetic variation has not been extensively studied. We have shown that there is parasite strain-specific variation in the level of splenomegaly and hepatomegaly in infected mice and used a forward genetic approach to identify the parasite loci that determine this variation. This approach allowed us to dissect and identify the parasite loci that determine the complex phenotypes induced by infection. Using the available trypanosome genetic map, a major quantitative trait locus (QTL) was identified on T. brucei chromosome 3 (LOD = 7.2) that accounted for approximately two thirds of the variance observed in each of two correlated phenotypes, splenomegaly and hepatomegaly, in the infected mice (named &lt;i&gt;TbOrg1&lt;/i&gt;). In addition, a second locus was identified that contributed to splenomegaly, hepatomegaly and reticulocytosis (&lt;i&gt;TbOrg2&lt;/i&gt;). This is the first use of quantitative trait locus mapping in a diploid protozoan and shows that there are trypanosome genes that directly contribute to the progression of pathology during infections and, therefore, that parasite genetic variation can be a critical factor in disease outcome. The identification of parasite loci is a first step towards identifying the genes that are responsible for these important traits and shows the power of genetic analysis as a tool for dissecting complex quantitative phenotypic traits

    Regulation of immunity during visceral Leishmania infection

    Get PDF
    Unicellular eukaryotes of the genus Leishmania are collectively responsible for a heterogeneous group of diseases known as leishmaniasis. The visceral form of leishmaniasis, caused by L. donovani or L. infantum, is a devastating condition, claiming 20,000 to 40,000 lives annually, with particular incidence in some of the poorest regions of the world. Immunity to Leishmania depends on the development of protective type I immune responses capable of activating infected phagocytes to kill intracellular amastigotes. However, despite the induction of protective responses, disease progresses due to a multitude of factors that impede an optimal response. These include the action of suppressive cytokines, exhaustion of specific T cells, loss of lymphoid tissue architecture and a defective humoral response. We will review how these responses are orchestrated during the course of infection, including both early and chronic stages, focusing on the spleen and the liver, which are the main target organs of visceral Leishmania in the host. A comprehensive understanding of the immune events that occur during visceral Leishmania infection is crucial for the implementation of immunotherapeutic approaches that complement the current anti-Leishmania chemotherapy and the development of effective vaccines to prevent disease.The research leading to these results has received funding from the European Community’s Seventh Framework Programme under grant agreement No.602773 (Project KINDRED). VR is supported by a post-doctoral fellowship granted by the KINDReD consortium. RS thanks the Foundation for Science and Technology (FCT) for an Investigator Grant (IF/00021/2014). This work was supported by grants to JE from ANR (LEISH-APO, France), Partenariat Hubert Curien (PHC) (program Volubilis, MA/11/262). JE acknowledges the support of the Canada Research Chair Program

    Plasmodium vivax but not Plasmodium falciparum blood-stage infection in humans is associated with the expansion of a CD8+ T cell population with cytotoxic potential

    Get PDF
    P. vivax and P. falciparum parasites display different tropism for host cells and induce very different clinical symptoms and pathology, suggesting that the immune responses required for protection may differ between these two species. However, no study has qualitatively compared the immune responses to P. falciparum or P. vivax in humans following primary exposure and infection. Here, we show that the two species differ in terms of the cellular immune responses elicited following primary infection. Specifically, P. vivax induced the expansion of a subset of CD8+ T cells expressing the activation marker CD38, whereas P. falciparum induced the expansion of CD38+ CD4+ T cells. The CD38+ CD8+ T cell population that expanded following P. vivax infection displayed greater cytotoxic potential compared to CD38- CD8+ T cells, and compared to CD38+ CD8+ T cells circulating during P. falciparum infection. We hypothesize that P. vivax infection leads to a stronger CD38+ CD8+ T cell activation because of its preferred tropism for MHC-I-expressing reticulocytes that, unlike mature red blood cells, can present antigen directly to CD8+ T cells. This study provides the first line of evidence to suggest an effector role for CD8+ T cells in P. vivax blood-stage immunity. It is also the first report of species-specific differences in the subset of T cells that are expanded following primary Plasmodium infection, suggesting that malaria vaccine development may require optimization according to the target parasite

    Enhancement of CD8 T-cell function through modifying surface glycoproteins in young and old mice

    Full text link
    Previous work from our laboratory has shown that modifying cell surface glycosylation with either a Clostridium perfringens -derived sialidase (CP-Siase), or an O-linked glycoprotein endopeptidase (OSGE) can enhance the function of CD4 T cells from both young and old mice at multiple levels. Here we have re-assessed the effect of age on CD8 T-cell function, and examined the outcome of enzymatic treatment with CP-Siase and OSGE on its different aspects. Pre-treatment of CD8 T cells with either CP-Siase or OSGE led to a significant increase in anti-CD3-mediated Ca 2+ response in both young and old mice. Pre-treated CD8 T cells from both age groups also displayed a significant increase in activation-induced CD69 and CD25 expression, and produced significantly higher amounts of interleukin-2 and interferon-γ in comparison to their untreated counterparts. Furthermore, pretreatment with either enzyme enhanced granzyme B expression in CD8 T cells, and increased their cytolytic activity in vitro . These data support the notion that glycosylated surface proteins hinder CD8 T-cell activation and function in both young and old mice, and raise the possibility of significantly improving CD8 T cell function in older individuals through enzymatic alteration of surface glycoproteins.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75199/1/j.1365-2567.2006.02420.x.pd
    • …
    corecore