179 research outputs found
Effects of turbidity and zooplankton availability on the condition and prey selection of pike larvae
Copepod reproductive effort and oxidative status as responses to warming in the marine environment
The marine ecosystems are under severe climate change-induced stress globally. The Baltic Sea is especially vulnerable to ongoing changes, such as warming. The aim of this study was to measure eco-physiological responses of a key copepod species to elevated temperature in an experiment, and by collecting field samples in the western Gulf of Finland. The potential trade-off between reproductive output and oxidative balance in copepods during thermal stress was studied by incubating female Acartia sp. for reproduction rate and oxidative stress measurements in ambient and elevated temperatures. Our field observations show that the glutathione cycle had a clear response in increasing stress and possibly had an important role in preventing oxidative damage: Lipid peroxidation and ratio of reduced and oxidized glutathione were negatively correlated throughout the study. Moreover, glutathione-s-transferase activated in late July when the sea water temperature was exceptionally high and Acartia sp. experienced high oxidative stress. The combined effect of a heatwave, increased cyanobacteria, and decreased dinoflagellate abundance may have caused larger variability in reproductive output in the field. An increase of 7 degrees C had a negative effect on egg production rate in the experiment. However, the effect on reproduction was relatively small, implying that Acartia sp. can tolerate warming at least within the temperature range of 9-16 degrees C. However, our data from the experiment suggest a link between reproductive success and oxidative stress during warming, shown as a significant combined effect of temperature and catalase on egg production rate.Peer reviewe
Size matters more than shape: Ingestion of primary and secondary microplastics by small predators
Experimental studies have shown how microplastics are taken up by various aquatic organisms. Most of these studies have been carried out with small ( 200 μm and ABS > 100 μm) in comparison to primary microplastic beads (90 μm). Our results show that fragments of secondary plastics may end up in the food web but only in small amounts, and that the size of the fragments more than their shape is a crucial nominator influencing the numbers of plastics ingested. Future research aiming to resolve the effects of microplastics in the ecosystems should concentrate on environmentally relevant plastics and concentrations.Peer reviewe
Combined effect of salinity and temperature on copepod reproduction and oxidative stress in brackish-water environment
Climate-induced warming and increased river inflows are forcing the Baltic Sea to radical changes in the near future; organisms living in this brackish-water ecosystem are already experiencing osmotic stress, which, together with thermal stress, may have severe consequences on the ecosystem. The aim of this work was to study the combined effect of decreasing salinity and increasing temperature on reproductive success and oxidative stress in zooplankton by using a calanoid copepod Acartia sp. as a model organism. The field study was conducted during summer 2020 in the western Gulf of Finland, using three sampling sites with naturally differing salinity levels. Additionally, the copepods from these sites were experimentally exposed to ambient or 3 degrees C elevated temperature for 72 h. The copepods derived from the deepest and the most saline sampling site suffered less oxidative damage and exhibited relatively high reproduction, while the temperature treatment itself had little effect. On the other hand, the field-based monitoring data showed otherwise; temperature increased lipid peroxidation, glutathione-s-transferase activity, or both in all three sampling sites. Meanwhile, egg production rate was negatively associated with temperature in the area with the lowest salinity. Moreover, egg production rate decreased from June to September along with increasing temperatures in the mid-salinity sampling site, while similar change occurred also in the highest-salinity site between August and September. The combined effect of salinity and sampling date on reproduction indicates the importance of even subtle salinity changes on copepods. Moreover, the data suggest that the unusually strong heatwave was responsible for increased oxidative stress during the sampling season and possibly forced a trade-off between antioxidant activity and reproductive effort.Peer reviewe
Effect of ocean acidification on the structure and fatty acid composition of a natural plankton community in the Baltic Sea
Increasing atmospheric carbon dioxide (CO2) is changing seawater chemistry towards reduced pH, which consequently affects various properties of marine organisms. Coastal and brackish water communities are expected to be less affected by ocean acidification (OA) as these communities are typically adapted to high fluctuations in CO2 and pH. Here we investigate the response of a coastal brackish water plankton community to increasing CO2 levels as projected for the coming decades and the end of this century in terms of community and biochemical fatty acid (FA) composition. A Baltic Sea plankton community was enclosed in a set of off-shore mesocosms and subjected to a CO2 gradient ranging from natural concentrations (~347 μatm pCO2) up to values projected for the year 2100 (~1333 μatm pCO2). We show that the phytoplankton community composition was resilient to CO2 and did not diverge between the treatments. Seston FA composition was influenced by community composition, which in turn was driven by silicate and phosphate limitation in the mesocosms, and showed no difference between the CO2 treatments. These results suggest that CO2 effects are dampened in coastal communities that already experience high natural fluctuations in pCO2. Although this coastal plankton community was tolerant to high pCO2 levels, hypoxia and CO2 uptake by the sea can aggravate acidification and may lead to pH changes outside the currently experienced range for coastal organisms
A Less Saline Baltic Sea Promotes Cyanobacterial Growth, Hampers Intracellular Microcystin Production, and Leads to Strain-Specific Differences in Allelopathy
Salinity is one of the main factors that explain the distribution of species in the Baltic Sea. Increased precipitation and consequent increase in freshwater inflow is predicted to decrease salinity in some areas of the Baltic Sea. Clearly such changes may have profound effects on the organisms living there. Here we investigate the response of the commonly occurring cyanobacterium Dolichospermum spp. to three salinities, 0, 3 and 6. For the three strains tested we recorded growth, intracellular toxicity (microcystin) and allelopathic properties. We show that Dolichospermum can grow in all the three salinities tested with highest growth rates in the lowest salinity. All strains showed allelopathic potential and it differed significantly between strains and salinities, but was highest in the intermediate salinity and lowest in freshwater. Intracellular toxin concentration was highest in salinity 6. In addition, based on monitoring data from the northern Baltic Proper and the Gulf of Finland, we show that salinity has decreased, while Dolichospermum spp. biomass has increased between 1979 and 2013. Thus, based on our experimental findings it is evident that salinity plays a large role in Dolichospermum growth, allelopathic properties and toxicity. In combination with our long-term data analyses, we conclude that decreasing salinity is likely to result in a more favourable environment for Dolichospermum spp. in some areas of the Baltic Sea.Peer reviewe
Oxidative stress and antioxidant defense responses in Acartia copepods in relation to environmental factors
On a daily basis, planktonic organisms migrate vertically and thus experience widely varying conditions in their physico-chemical environment. In the Gulf of Finland, these changes are larger than values predicted by climate change scenarios predicted for the next century (up to 0.5 units in pH and 5 degrees C in temperature). In this work, we are interested in how temporal variations in physico-chemical characteristics of the water column on a daily and weekly scale influence oxidative stress level and antioxidant responses in the planktonic copepod of the genus Acartia. Responses were determined from samples collected during a two-week field survey in the western Gulf of Finland, Baltic Sea. Our results showed that GST (Glutathione-S-transferase) enzyme activity increased in the surface waters between Weeks I and II, indicating antioxidant defense mechanism activation. This is most likely due to elevating temperature, pH, and dissolved oxygen observed between these two weeks. During Week II also GSSG (oxidized glutathione) was detected, indicating that copepods responded to stressor(s) in the environment. Our results suggest that Acartia copepods seem fairly tolerant to weekly fluctuations in environmental conditions in coastal and estuarine areas, in terms of antioxidant defense and oxidative stress. This could be directly connected to a very efficient glutathione cycling system acting as antioxidant defense system for neutralizing ROS and avoiding elevated levels of LPX
- …