49 research outputs found

    Ancora: a web resource for exploring highly conserved noncoding elements and their association with developmental regulatory genes

    Get PDF
    Ancora is a web resource that provides data and tools for exploring genomic organization of highly conserved noncoding elements for multiple genomes

    Digital transcriptome profiling of normal and glioblastoma-derived neural stem cells identifies genes associated with patient survival.

    Get PDF
    BACKGROUND: Glioblastoma multiforme, the most common type of primary brain tumor in adults, is driven by cells with neural stem (NS) cell characteristics. Using derivation methods developed for NS cells, it is possible to expand tumorigenic stem cells continuously in vitro. Although these glioblastoma-derived neural stem (GNS) cells are highly similar to normal NS cells, they harbor mutations typical of gliomas and initiate authentic tumors following orthotopic xenotransplantation. Here, we analyzed GNS and NS cell transcriptomes to identify gene expression alterations underlying the disease phenotype. METHODS: Sensitive measurements of gene expression were obtained by high-throughput sequencing of transcript tags (Tag-seq) on adherent GNS cell lines from three glioblastoma cases and two normal NS cell lines. Validation by quantitative real-time PCR was performed on 82 differentially expressed genes across a panel of 16 GNS and 6 NS cell lines. The molecular basis and prognostic relevance of expression differences were investigated by genetic characterization of GNS cells and comparison with public data for 867 glioma biopsies. RESULTS: Transcriptome analysis revealed major differences correlated with glioma histological grade, and identified misregulated genes of known significance in glioblastoma as well as novel candidates, including genes associated with other malignancies or glioma-related pathways. This analysis further detected several long non-coding RNAs with expression profiles similar to neighboring genes implicated in cancer. Quantitative PCR validation showed excellent agreement with Tag-seq data (median Pearson r = 0.91) and discerned a gene set robustly distinguishing GNS from NS cells across the 22 lines. These expression alterations include oncogene and tumor suppressor changes not detected by microarray profiling of tumor tissue samples, and facilitated the identification of a GNS expression signature strongly associated with patient survival (P = 1e-6, Cox model). CONCLUSIONS: These results support the utility of GNS cell cultures as a model system for studying the molecular processes driving glioblastoma and the use of NS cells as reference controls. The association between a GNS expression signature and survival is consistent with the hypothesis that a cancer stem cell component drives tumor growth. We anticipate that analysis of normal and malignant stem cells will be an important complement to large-scale profiling of primary tumors.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    In Silico Detection of Sequence Variations Modifying Transcriptional Regulation

    Get PDF
    Identification of functional genetic variation associated with increased susceptibility to complex diseases can elucidate genes and underlying biochemical mechanisms linked to disease onset and progression. For genes linked to genetic diseases, most identified causal mutations alter an encoded protein sequence. Technological advances for measuring RNA abundance suggest that a significant number of undiscovered causal mutations may alter the regulation of gene transcription. However, it remains a challenge to separate causal genetic variations from linked neutral variations. Here we present an in silico driven approach to identify possible genetic variation in regulatory sequences. The approach combines phylogenetic footprinting and transcription factor binding site prediction to identify variation in candidate cis-regulatory elements. The bioinformatics approach has been tested on a set of SNPs that are reported to have a regulatory function, as well as background SNPs. In the absence of additional information about an analyzed gene, the poor specificity of binding site prediction is prohibitive to its application. However, when additional data is available that can give guidance on which transcription factor is involved in the regulation of the gene, the in silico binding site prediction improves the selection of candidate regulatory polymorphisms for further analyses. The bioinformatics software generated for the analysis has been implemented as a Web-based application system entitled RAVEN (regulatory analysis of variation in enhancers). The RAVEN system is available at http://www.cisreg.ca for all researchers interested in the detection and characterization of regulatory sequence variation

    Assessment of transcript reconstruction methods for RNA-seq

    Full text link
    We evaluated 25 protocol variants of 14 independent computational methods for exon identification, transcript reconstruction and expression-level quantification from RNA-seq data. Our results show that most algorithms are able to identify discrete transcript components with high success rates but that assembly of complete isoform structures poses a major challenge even when all constituent elements are identified. Expression-level estimates also varied widely across methods, even when based on similar transcript models. Consequently, the complexity of higher eukaryotic genomes imposes severe limitations on transcript recall and splice product discrimination that are likely to remain limiting factors for the analysis of current-generation RNA-seq data

    Complex Loci in Human and Mouse Genomes

    Get PDF
    Mammalian genomes harbor a larger than expected number of complex loci, in which multiple genes are coupled by shared transcribed regions in antisense orientation and/or by bidirectional core promoters. To determine the incidence, functional significance, and evolutionary context of mammalian complex loci, we identified and characterized 5,248 cis–antisense pairs, 1,638 bidirectional promoters, and 1,153 chains of multiple cis–antisense and/or bidirectionally promoted pairs from 36,606 mouse transcriptional units (TUs), along with 6,141 cis–antisense pairs, 2,113 bidirectional promoters, and 1,480 chains from 42,887 human TUs. In both human and mouse, 25% of TUs resided in cis–antisense pairs, only 17% of which were conserved between the two organisms, indicating frequent species specificity of antisense gene arrangements. A sampling approach indicated that over 40% of all TUs might actually be in cis–antisense pairs, and that only a minority of these arrangements are likely to be conserved between human and mouse. Bidirectional promoters were characterized by variable transcriptional start sites and an identifiable midpoint at which overall sequence composition changed strand and the direction of transcriptional initiation switched. In microarray data covering a wide range of mouse tissues, genes in cis–antisense and bidirectionally promoted arrangement showed a higher probability of being coordinately expressed than random pairs of genes. In a case study on homeotic loci, we observed extensive transcription of nonconserved sequences on the noncoding strand, implying that the presence rather than the sequence of these transcripts is of functional importance. Complex loci are ubiquitous, host numerous nonconserved gene structures and lineage-specific exonification events, and may have a cis-regulatory impact on the member genes

    Transcript Annotation in FANTOM3: Mouse Gene Catalog Based on Physical cDNAs

    Get PDF
    The international FANTOM consortium aims to produce a comprehensive picture of the mammalian transcriptome, based upon an extensive cDNA collection and functional annotation of full-length enriched cDNAs. The previous dataset, FANTOM2, comprised 60,770 full-length enriched cDNAs. Functional annotation revealed that this cDNA dataset contained only about half of the estimated number of mouse protein-coding genes, indicating that a number of cDNAs still remained to be collected and identified. To pursue the complete gene catalog that covers all predicted mouse genes, cloning and sequencing of full-length enriched cDNAs has been continued since FANTOM2. In FANTOM3, 42,031 newly isolated cDNAs were subjected to functional annotation, and the annotation of 4,347 FANTOM2 cDNAs was updated. To accomplish accurate functional annotation, we improved our automated annotation pipeline by introducing new coding sequence prediction programs and developed a Web-based annotation interface for simplifying the annotation procedures to reduce manual annotation errors. Automated coding sequence and function prediction was followed with manual curation and review by expert curators. A total of 102,801 full-length enriched mouse cDNAs were annotated. Out of 102,801 transcripts, 56,722 were functionally annotated as protein coding (including partial or truncated transcripts), providing to our knowledge the greatest current coverage of the mouse proteome by full-length cDNAs. The total number of distinct non-protein-coding transcripts increased to 34,030. The FANTOM3 annotation system, consisting of automated computational prediction, manual curation, and final expert curation, facilitated the comprehensive characterization of the mouse transcriptome, and could be applied to the transcriptomes of other species

    Mammalian MicroRNA Prediction through a Support Vector Machine Model of Sequence and Structure

    Get PDF
    BACKGROUND: MicroRNAs (miRNAs) are endogenous small noncoding RNA gene products, on average 22 nt long, found in a wide variety of organisms. They play important regulatory roles by targeting mRNAs for degradation or translational repression. There are 377 known mouse miRNAs and 475 known human miRNAs in the May 2007 release of the miRBase database, the majority of which are conserved between the two species. A number of recent reports imply that it is likely that many mammalian miRNAs remain to be discovered. The possibility that there are more of them expressed at lower levels or in more specialized expression contexts calls for the exploitation of genome sequence information to accelerate their discovery. METHODOLOGY/PRINCIPAL FINDINGS: In this article, we describe a computational method-mirCoS-that uses three support vector machine models sequentially to discover new miRNA candidates in mammalian genomes based on sequence, secondary structure, and conservation. mirCoS can efficiently detect the majority of known miRNAs and predicts an extensive set of hairpin structures based on human-mouse comparisons. In total, 3476 mouse candidates and 3441 human candidates were found. These hairpins are more similar to known miRNAs than to negative controls in several aspects not considered by the prediction algorithm. A significant fraction of predictions is supported by existing expression evidence. CONCLUSIONS/SIGNIFICANCE: Using a novel approach, mirCoS performs comparably to or better than existing miRNA prediction methods, and contributes a significant number of new candidate miRNAs for experimental verification
    corecore