78 research outputs found

    NLO QCD corrections to WZ+jet production with leptonic decays

    Get PDF
    We compute the next-to-leading order QCD corrections to WZ+jet production at the Tevatron and the LHC, including decays of the electroweak bosons to light leptons with all off-shell effects taken into account. The corrections are sizable and have significant impact on the differential distributions.Comment: 14 pages, 7 figure

    Radiation spectra of laser-driven quantum relativistic electrons

    Full text link
    A procedure to calculate the radiation spectrum emitted by an arbitrarily prepared Dirac wave packet is developed. It is based on the Dirac charge current and classical electrodynamic theory. Apart from giving absolute intensity values, it is exact in terms of relativistic retardation effects and angular dependence. We employ a laser driven free electron to demonstrate the advantages of our method as compared to traditional ones that merely rely on the Fourier transform of the dipole operator's expectation value. Classical reference calculations confirm the results obtained for the low-frequency part of the spectrum, especially in terms of the observed red-shifts, which clearly deviate from non-relativistic calculations. In the high-frequency part of the spectrum, we note appreciable deviations to the purely classical calculations which may be linked to quantum averaging effects.Comment: 30 pages, 7 figure

    Spontaneous Magnetization of the O(3) Ferromagnet at Low Temperatures

    Full text link
    We investigate the low-temperature behavior of ferromagnets with a spontaneously broken symmetry O(3) \to O(2). The analysis is performed within the perspective of nonrelativistic effective Lagrangians, where the dynamics of the system is formulated in terms of Goldstone bosons. Unlike in a Lorentz-invariant framework (chiral perturbation theory), where loop graphs are suppressed by two powers of momentum, loops involving ferromagnetic spin waves are suppressed by three momentum powers. The leading coefficients of the low-temperature expansion for the partition function are calculated up to order p10p^{10}. In agreement with Dyson's pioneering microscopic analysis of the cubic ferromagnet, we find that, in the spontaneous magnetization, the magnon-magnon interaction starts manifesting itself only at order T4T^4. The striking difference with respect to the low-temperature properties of the O(3) antiferromagnet is discussed from a unified point of view, relying on the effective Lagrangian technique.Comment: 23 pages, 4 figure

    Online scheduling of bounded length jobs to maximize throughput

    Full text link
    International audienceWe consider an online scheduling problem, motivated by the issues present at the joints of networks using ATM and TCP/IP. Namely, IP packets have to be broken down into small ATM cells and sent out before their deadlines, but cells corresponding to different packets can be interwoven. More formally, we consider the online scheduling problem with preemptions, where each job jj is revealed at release time rjr_j, and has processing time pjp_j, deadline djd_j, and weight wjw_j. A preempted job can be resumed at any time. The goal is to maximize the total weight of all jobs completed on time. Our main results are as follows. Firstly, we prove that when the processing times of all jobs are at most kk, the optimum deterministic competitive ratio is Θ(k/logk)\Theta(k /\log k). Secondly, we give a deterministic algorithm with competitive ratio depending on the ratio between the smallest and the largest processing time of all jobs. In particular, it attains competitive ratio 5 in the case when all jobs have identical processing times, for which we give a lower bound of 2.598. The latter upper bound also yields an O(logk)O(\log k)-competitive randomized algorithm for the variant with processing times bounded by kk
    corecore