905 research outputs found

    Breastfeeding history, pregnancy experience and risk of breast cancer.

    Get PDF
    Epidemiological evidence suggests that breastfeeding protects against breast cancer. Whether an effect of age at first breastfeeding is independent of an effect of age at first birth is unclear. We hypothesized that nausea and vomiting in pregnancy, which are associated with elevated serum oestradiol levels during pregnancy, may increase risk. Cases were 452 parous, premenopausal women, 40 years or younger, diagnosed with breast cancer in Los Angeles County from July 1983 to December 1988. Control subjects were matched to cases on age, race, parity and neighbourhood. Pregnancy and breastfeeding histories were obtained from in-person interviews. Odds of breast cancer among women who breastfed for at least 16 months relative to those among women who did not breastfeed was 0.66 [95% confidence interval (CI) 0.41-1.05]. Number of children breastfed was not associated with risk. Risk was lower in women who first breastfed at older ages. Having ever been treated for nausea or vomiting during pregnancy was associated with an increased risk, especially in women experiencing recent pregnancies (OR = 2.03, 95% CI 1.05-3.92). These results support a protective role of breastfeeding and an adverse role of nausea or vomiting during pregnancy in the development of premenopausal breast cancer, especially in the years immediately following pregnancy

    Optical angular momentum transfer to trapped absorbing particles

    Get PDF
    Particle rotation resulting from the absorption of light carrying angular momentum has been measured. When absorbing CuO particles (1-5ÎŒm) were trapped in a focused ‘‘donut’’ laser beam, they rotated, due to the helical phase structure of the beam. Changing the polarization of the light from plane to circular caused the rotation frequency to increase or decrease, depending on the sense of the polarization with respect to the helicity of the beam. Rotation frequencies were obtained by Fourier analysis of amplitude fluctuations in the backscattered light from the particles. © 1996 The American Physical Society

    Design and Overview of the Solar Cruiser Mission

    Get PDF
    Solar Cruiser is a Small Satellite Technology Demonstration Mission (TDM) of Opportunity to mature solar sail propulsion technology to enable near-term, high-priority breakthrough science missions as defined in the Solar and Space Physics Decadal Survey. Solar Cruiser will demonstrate a “sailcraft” platform with pointing control and attitude stability comparable to traditional platforms, upon which a new class of Heliophysics missions may fly instruments. It will show sailcraft operation (acceleration, navigation, station keeping, inclination change) immediately applicable to near-term missions, and show scalability of sail technologies such as the boom, membrane, deployer, reflectivity control devices for roll momentum management to enable more demanding missions, such as high inclination solar imaging. A team led by the NASA Marshall Space Flight Center is developing the Solar Cruiser with partners Ball Aerospace and Roccor (a Redwire company). Ball is responsible for procuring a Venus class microsat commercial bus from Blue Canyon Technologies, defining all necessary mission-specific modifications, and performing the Integration and Test of the Bus with the Solar Sail System to form the completed sailcraft. Ball will also procure the IRIS radio from Space Dynamics Laboratories and develop the adapter and harnessing that interfaces to the Launch Vehicle. Roccor will integrate the Solar Sail System (SSS), including the sail membrane from their Subcontractor NeXolve, the Triangular, Rollable and Collapsible (TRACTM) Boom, the LISAs (Lightweight Integrated Solar Arrays) and momentum management Reflective Control Devices (RCDs), before providing it to Ball for Integration and Test. Roccor will also build the Active Mass Translator (AMT), which moves the Sail relative to the Bus to control momentum in the pitch/yaw directions, while the RCDs provide roll control. MSFC manages the overall mission and provide the specialized solar sail attitude determination and control system (SSADCS) algorithms and software necessary to fly the sailcraft. The SSADCS software created for this mission will autonomously operate the AMT and RCDs to provide complete momentum control of the sailcraft. Bus-mounted Electric Propulsion thrusters are included to provide auxiliary momentum management, if required. Solar Cruiser will launch as a secondary payload with NASA’s Interstellar Mapping and Acceleration Probe (IMAP)in early 2025. The sailcraft will separate from the launch vehicle on a near-L1 trajectory (Sun-Earth Lagrangian Point 1; sunward of L1 along the Sun-Earth Line) and complete its primary mission in 11 months or less. During this time, Solar Cruiser will complete and fully characterize a large solar sail deployment (1,653 square meters/17,793 square feet), sail operation, station keeping in a sub-L1 halo orbit, inclination changes, and a roll demonstration. This paper provides a mission and sailcraft design overview, including objectives and planned operations of the technology demonstration mission. It presents the latest findings from technology maturation efforts, major program design reviews, and initial launch integration planning

    BPS branes in discrete torsion orbifolds

    Full text link
    We investigate D-branes in a Z_3xZ_3 orbifold with discrete torsion. For this class of orbifolds the only known objects which couple to twisted RR potentials have been non-BPS branes. By using more general gluing conditions we construct here a D-brane which is BPS and couples to RR potentials in the twisted and in the untwisted sectors.Comment: 20 pages, LaTe

    Moduli Webs and Superpotentials for Five-Branes

    Get PDF
    We investigate the one-parameter Calabi-Yau models and identify families of D5-branes which are associated to lines embedded in these manifolds. The moduli spaces are given by sets of Riemann curves, which form a web whose intersection points are described by permutation branes. We arrive at a geometric interpretation for bulk-boundary correlators as holomorphic differentials on the moduli space and use this to compute effective open-closed superpotentials to all orders in the open string couplings. The fixed points of D5-brane moduli under bulk deformations are determined.Comment: 41 pages, 1 figur
    • 

    corecore