54 research outputs found

    High BMI is significantly associated with positive progesterone receptor status and clinico-pathological markers for non-aggressive disease in endometrial cancer

    Get PDF
    Background: Endometrial cancer incidence is increasing in industrialised countries. High body mass index (BMI, kg m−2) is associated with higher risk for disease. We wanted to investigate if BMI is related to clinico-pathological characteristics, hormone receptor status in primary tumour, and disease outcome in endometrial cancer. Patients and methods: In total, 1129 women primarily treated for endometrial carcinoma at Haukeland University Hospital during 1981–2009 were studied. Body mass index was available for 949 patients and related to comprehensive clinical and histopathological data, hormone receptor status in tumour, treatment, and follow-up. Results: High BMI was significantly associated with low International Federation of Gynaecology and Obstetrics (FIGO) stage, endometrioid histology, low/intermediate grade, and high level of progesterone receptor (PR) mRNA by qPCR (n=150; P=0.02) and protein expression by immunohistochemistry (n=433; P=0.003). In contrast, oestrogen receptor (ERα) status was not associated with BMI. Overweight/obese women had significantly better disease-specific survival (DSS) than normal/underweight women in univariate analysis (P=0.035). In multivariate analysis of DSS adjusting for age, FIGO stage, histological subtype, and grade, BMI showed no independent prognostic impact. Conclusion: High BMI was significantly associated with markers of non-aggressive disease and positive PR status in a large population-based study of endometrial carcinoma. Women with high BMI had significantly better prognosis in univariate analysis of DSS, an effect that disappeared in multivariate analysis adjusting for established prognostic markers. The role of PR in endometrial carcinogenesis needs to be further studied

    When assessment defines the content—understanding goals in between teachers and policy

    Get PDF
    © 2020 The Authors. The Curriculum Journal published by John Wiley & Sons Ltd on behalf of British Educational Research Association.Education policy development internationally reflect a widespread expansion of learning outcome orientation in policy, curricula and assessment. In this paper, teachers’ perceptions about their work are explored, as goals and assessment play a more prominent role driven by the introduction of a learning outcomes‐oriented system. This is investigated through interviews of Norwegian teachers and extensive policy analysis of Norwegian policy documents. The findings indicate that the teachers are finding ways to negotiate and adjust to the language in the policies investigated in this study. Furthermore, the findings show that the teachers have developed their professional language according to the policies. The teachers referred to their self‐made criteria and goal sheets as central tools in explicating what is to be learned. In many ways, the tools for assessment, thus determine the content of education as well as what is valued in the educational system.publishedVersio

    Disaccharide topology induces slow down in local water dynamics

    Get PDF
    Molecular level insight into water structure and structural dynamics near proteins, lipids and nucleic acids is critical to the quantitative understanding of many biophysical processes. Un- fortunately, understanding hydration and hydration dynamics around such large molecules is challenging because of the necessity of deconvoluting the effects of topography and chemical heterogeneity. Here we study, via classical all atom simulation, water structure and structural dynamics around two biologically relevant solutes large enough to have significant chemical and topological heterogeneity but small enough to be computationally tractable: the disaccharides Kojibiose and Trehalose. We find both molecules to be strongly amphiphilic (as quantified from normalized local density fluctuations) and to induce nonuniform local slowdown in water translational and rotational motion. Detailed analysis of the rotational slowdown shows that while the rotational mechanism is similar to that previously identified in other aqueous systems by Laage, Hynes and coworkers, two novel characteristics are observed: broadening of the transition state during hydrogen bond exchange (water rotation) and a subpopulation of water for which rotation is slowed because of hindered access of the new accepting water molecule to the transition state. Both of these characteristics are expected to be generic features of water rotation around larger biomolecules and, taken together, emphasize the difficulty in transferring insight into water rotation around small molecules to much larger amphiphilic solutes.This work is part of the research program of the “Stichting voor Fundamenteel Onderzoek der Materie (FOM)” which is financially supported by the “Nederlandse organisatie voor Wetenschap- pelijk Onderzoek (NWO)”. Further financial support was provided by a Marie Curie Incoming International Fellowship (RKC). We gratefully acknowledge SARA, the Dutch center for high- performance computing, for computational time and Huib Bakker and Daan Frenkel for useful critical reviews on an earlier version of this work. We thank two anonymous reviewers for their excellent work, especially for bringing to our attention calculations done on the transition state geometry of dimers and the overstructuring of the O-O radial distribution function of SPC/E water

    Bioinformatics and molecular modeling in glycobiology

    Get PDF
    The field of glycobiology is concerned with the study of the structure, properties, and biological functions of the family of biomolecules called carbohydrates. Bioinformatics for glycobiology is a particularly challenging field, because carbohydrates exhibit a high structural diversity and their chains are often branched. Significant improvements in experimental analytical methods over recent years have led to a tremendous increase in the amount of carbohydrate structure data generated. Consequently, the availability of databases and tools to store, retrieve and analyze these data in an efficient way is of fundamental importance to progress in glycobiology. In this review, the various graphical representations and sequence formats of carbohydrates are introduced, and an overview of newly developed databases, the latest developments in sequence alignment and data mining, and tools to support experimental glycan analysis are presented. Finally, the field of structural glycoinformatics and molecular modeling of carbohydrates, glycoproteins, and protein–carbohydrate interaction are reviewed

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    Get PDF

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field

    Brazilian Consensus on Photoprotection

    Full text link
    • 

    corecore