148 research outputs found
Oscillations of a rapidly rotating annular Bose-Einstein condensate
A time-dependent variational Lagrangian analysis based on the
Gross-Pitaevskii energy functional serves to study the dynamics of a metastable
giant vortex in a rapidly rotating Bose-Einstein condensate. The resulting
oscillation frequencies of the core radius reproduce the trends seen in recent
experiments [Engels et al., Phys. Rev. Lett. 90, 170405 (2003)], but the
theoretical values are smaller by a factor approximately 0.6-0.8.Comment: 7 pages, revtex
Cross-lagged associations between depressive symptoms and response style in adolescents
Depressive disorders are highly prevalent during adolescence and they are a major concern for individuals and society. The Response Style Theory and the Scar Theory both suggest a relationship between response styles and depressive symptoms, but the theories differ in the order of the development of depressive symptoms. Longitudinal reciprocal prospective relationships between depressive symptoms and response styles were examined in a community sample of 1343 adolescents. Additionally, response style was constructed with the traditional approach, which involves examining three response styles separately without considering the possible relations between them, and with the ratio approach, which accounts for all three response styles simultaneously. No reciprocal relationships between depressive symptoms and response style were found over time. Only longitudinal relationships between response style and depressive symptoms were significant. This study found that only depressive symptoms predicted response style, whereas the response style did not emerge as an important underlying mechanism responsible for developing and maintaining depressive symptoms in adolescents. These findings imply that prevention and intervention programs for adolescents with low depressive symptoms should not focus on adaptive and maladaptive response style strategies to decrease depressive symptoms, but should focus more on behavioral interventions
Vortex lattice of a Bose-Einstein Condensate in a rotating anisotropic trap
We study the vortex lattices in a Bose-Einstein Condensate in a rotating
anisotropic harmonic trap. We first investigate the single particle
wavefunctions obtained by the exact solution of the problem and give simple
expressions for these wavefunctions in the small anisotropy limit. Depending on
the strength of the interactions, a few or a large number of vortices can be
formed. In the limit of many vortices, we calculate the density profile of the
cloud and show that the vortex lattice stays triangular. We also find that the
vortex lattice planes align themselves with the weak axis of the external
potential. For a small number of vortices, we numerically solve the
Gross-Pitaevskii equation and find vortex configurations that are very
different from the vortex configurations in an axisymmetric rotating trap.Comment: 15 pages,4 figure
Народное образование крымских татар в конце XIX - начале XX вв.: история и опыт в свете модернизации высшего образования Украины
Процесс модернизации высшего образования Украины проходит параллельно с процессом интеграции крымскотатарского населения в гражданское общество Украины.Процес модернізації вищого утворення України проходить паралельно з процесом інтеграції кримськотатарського населення в цивільне суспільство України
Anisotropic transport in the two-dimensional electron gas in the presence of spin-orbit coupling
In a two-dimensional electron gas as realized by a semiconductor quantum
well, the presence of spin-orbit coupling of both the Rashba and Dresselhaus
type leads to anisotropic dispersion relations and Fermi contours. We study the
effect of this anisotropy on the electrical conductivity in the presence of
fixed impurity scatterers. The conductivity also shows in general an anisotropy
which can be tuned by varying the Rashba coefficient. This effect provides a
method of detecting and investigating spin-orbit coupling by measuring
spin-unpolarized electrical currents in the diffusive regime. Our approach is
based on an exact solution of the two-dimensional Boltzmann equation and
provides also a natural framework for investigating other transport effects
including the anomalous Hall effect.Comment: 10 pages, 1 figure included. Discussion of experimental impact
enlarged; error in calculation of conductivity contribution corrected (cf.
Eq. (A14)), no changes in qualitative results and physical consequence
Macroscopic dynamics of a Bose-Einstein condensate containing a vortex lattice
Starting from the equations of rotational hydrodynamics we study the
macroscopic behaviour of a trapped Bose-Einstein condensate containing a large
number of vortices. The stationary configurations of the system, the
frequencies of the collective excitations and the expansion of the condensate
are investigated as a function of the angular velocity of the vortex lattice.
The time evolution of the condensate and of the lattice geometry induced by a
sudden deformation of the trap is also discussed and compared with the recent
experimental results of P. Engels et al., Phys. Rev. Lett. 89, 100403 (2002).Comment: 4 pages, 4 figure
Nanofabrication by magnetic focusing of supersonic beams
We present a new method for nanoscale atom lithography. We propose the use of
a supersonic atomic beam, which provides an extremely high-brightness and cold
source of fast atoms. The atoms are to be focused onto a substrate using a thin
magnetic film, into which apertures with widths on the order of 100 nm have
been etched. Focused spot sizes near or below 10 nm, with focal lengths on the
order of 10 microns, are predicted. This scheme is applicable both to precision
patterning of surfaces with metastable atomic beams and to direct deposition of
material.Comment: 4 pages, 3 figure
Deconfining Phase Transition as a Matrix Model of Renormalized Polyakov Loops
We discuss how to extract renormalized from bare Polyakov loops in SU(N)
lattice gauge theories at nonzero temperature in four spacetime dimensions.
Single loops in an irreducible representation are multiplicatively renormalized
without mixing, through a renormalization constant which depends upon both
representation and temperature. The values of renormalized loops in the four
lowest representations of SU(3) were measured numerically on small, coarse
lattices. We find that in magnitude, condensates for the sextet and octet loops
are approximately the square of the triplet loop. This agrees with a large
expansion, where factorization implies that the expectation values of loops in
adjoint and higher representations are just powers of fundamental and
anti-fundamental loops. For three colors, numerically the corrections to the
large relations are greatest for the sextet loop, ; these
represent corrections of for N=3. The values of the renormalized
triplet loop can be described by an SU(3) matrix model, with an effective
action dominated by the triplet loop. In several ways, the deconfining phase
transition for N=3 appears to be like that in the matrix model of
Gross and Witten.Comment: 24 pages, 7 figures; v2, 27 pages, 12 figures, extended discussion
for clarity, results unchange
Spin-current modulation and square-wave transmission through periodically stubbed electron waveguides
Ballistic spin transport through waveguides, with symmetric or asymmetric
double stubs attached to them periodically, is studied systematically in the
presence of a weak spin-orbit coupling that makes the electrons precess. By an
appropriate choice of the waveguide length and of the stub parameters injected
spin-polarized electrons can be blocked completely and the transmission shows a
periodic and nearly square-type behavior, with values 1 and 0, with wide gaps
when only one mode is allowed to propagate in the waveguide. A similar behavior
is possible for a certain range of the stub parameters even when two-modes can
propagate in the waveguide and the conductance is doubled. Such a structure is
a good candidate for establishing a realistic spin transistor. A further
modulation of the spin current can be achieved by inserting defects in a
finite-number stub superlattice. Finite-temperature effects on the spin
conductance are also considered.Comment: 19 pages, 8 figure
Vortices and dynamics in trapped Bose-Einstein condensates
I review the basic physics of ultracold dilute trapped atomic gases, with
emphasis on Bose-Einstein condensation and quantized vortices. The hydrodynamic
form of the Gross-Pitaevskii equation (a nonlinear Schr{\"o}dinger equation)
illuminates the role of the density and the quantum-mechanical phase. One
unique feature of these experimental systems is the opportunity to study the
dynamics of vortices in real time, in contrast to typical experiments on
superfluid He. I discuss three specific examples (precession of single
vortices, motion of vortex dipoles, and Tkachenko oscillations of a vortex
array). Other unusual features include the study of quantum turbulence and the
behavior for rapid rotation, when the vortices form dense regular arrays.
Ultimately, the system is predicted to make a quantum phase transition to
various highly correlated many-body states (analogous to bosonic quantum Hall
states) that are not superfluid and do not have condensate wave functions. At
present, this transition remains elusive. Conceivably, laser-induced synthetic
vector potentials can serve to reach this intriguing phase transition.Comment: Accepted for publication in Journal of Low Temperature Physics,
conference proceedings: Symposia on Superfluids under Rotation (Lammi,
Finland, April 2010
- …