291 research outputs found

    Background error covariance estimation for atmospheric CO 2 data assimilation

    Full text link
    In any data assimilation framework, the background error covariance statistics play the critical role of filtering the observed information and determining the quality of the analysis. For atmospheric CO 2 data assimilation, however, the background errors cannot be prescribed via traditional forecast or ensemble‐based techniques as these fail to account for the uncertainties in the carbon emissions and uptake, or for the errors associated with the CO 2 transport model. We propose an approach where the differences between two modeled CO 2 concentration fields, based on different but plausible CO 2 flux distributions and atmospheric transport models, are used as a proxy for the statistics of the background errors. The resulting error statistics: (1) vary regionally and seasonally to better capture the uncertainty in the background CO 2 field, and (2) have a positive impact on the analysis estimates by allowing observations to adjust predictions over large areas. A state‐of‐the‐art four‐dimensional variational (4D‐VAR) system developed at the European Centre for Medium‐Range Weather Forecasts (ECMWF) is used to illustrate the impact of the proposed approach for characterizing background error statistics on atmospheric CO 2 concentration estimates. Observations from the Greenhouse gases Observing SATellite “IBUKI” (GOSAT) are assimilated into the ECMWF 4D‐VAR system along with meteorological variables, using both the new error statistics and those based on a traditional forecast‐based technique. Evaluation of the four‐dimensional CO 2 fields against independent CO 2 observations confirms that the performance of the data assimilation system improves substantially in the summer, when significant variability and uncertainty in the fluxes are present. Key Points Difference in modeled CO2 fields is used to define background errors in CO2‐DA Both atmospheric transport & flux pattern differences impact background errors Evaluation using independent data shows positive impact on analysis estimatesPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/100305/1/jgrd50654.pd

    Testing Inflation with Large Scale Structure: Connecting Hopes with Reality

    Full text link
    The statistics of primordial curvature fluctuations are our window into the period of inflation, where these fluctuations were generated. To date, the cosmic microwave background has been the dominant source of information about these perturbations. Large scale structure is however from where drastic improvements should originate. In this paper, we explain the theoretical motivations for pursuing such measurements and the challenges that lie ahead. In particular, we discuss and identify theoretical targets regarding the measurement of primordial non-Gaussianity. We argue that when quantified in terms of the local (equilateral) template amplitude fNLlocf_{\rm NL}^{\rm loc} (fNLeqf_{\rm NL}^{\rm eq}), natural target levels of sensitivity are ΔfNLloc,eq.≃1\Delta f_{\rm NL}^{\rm loc, eq.} \simeq 1. We highlight that such levels are within reach of future surveys by measuring 2-, 3- and 4-point statistics of the galaxy spatial distribution. This paper summarizes a workshop held at CITA (University of Toronto) on October 23-24, 2014.Comment: 27 pages + reference

    The Atacama Cosmology Telescope: Two-Season ACTPol Lensing Power Spectrum

    Get PDF
    We report a measurement of the power spectrum of cosmic microwave background (CMB) lensing from two seasons of Atacama Cosmology Telescope Polarimeter (ACTPol) CMB data. The CMB lensing power spectrum is extracted from both temperature and polarization data using quadratic estimators. We obtain results that are consistent with the expectation from the best-fit Planck LCDM model over a range of multipoles L=80-2100, with an amplitude of lensing A_lens = 1.06 +/- 0.15 (stat.) +/- 0.06 (sys.) relative to Planck. Our measurement of the CMB lensing power spectrum gives sigma_8 Omega_m^0.25 = 0.643 +/- 0.054; including baryon acoustic oscillation scale data, we constrain the amplitude of density fluctuations to be sigma_8 = 0.831 +/- 0.053. We also update constraints on the neutrino mass sum. We verify our lensing measurement with a number of null tests and systematic checks, finding no evidence of significant systematic errors. This measurement relies on a small fraction of the ACTPol data already taken; more precise lensing results can therefore be expected from the full ACTPol dataset.Comment: 17 pages, 11 figures, to be submitted to Physical Review

    The Atacama Cosmology Telescope: Two-Season ACTPol Spectra and Parameters

    Get PDF
    We present the temperature and polarization angular power spectra measured by the Atacama Cosmology Telescope Polarimeter (ACTPol). We analyze night-time data collected during 2013-14 using two detector arrays at 149 GHz, from 548 deg2^2 of sky on the celestial equator. We use these spectra, and the spectra measured with the MBAC camera on ACT from 2008-10, in combination with Planck and WMAP data to estimate cosmological parameters from the temperature, polarization, and temperature-polarization cross-correlations. We find the new ACTPol data to be consistent with the LCDM model. The ACTPol temperature-polarization cross-spectrum now provides stronger constraints on multiple parameters than the ACTPol temperature spectrum, including the baryon density, the acoustic peak angular scale, and the derived Hubble constant. Adding the new data to planck temperature data tightens the limits on damping tail parameters, for example reducing the joint uncertainty on the number of neutrino species and the primordial helium fraction by 20%.Comment: 23 pages, 25 figure

    Measurement of inclusive D*+- and associated dijet cross sections in photoproduction at HERA

    Get PDF
    Inclusive photoproduction of D*+- mesons has been measured for photon-proton centre-of-mass energies in the range 130 < W < 280 GeV and a photon virtuality Q^2 < 1 GeV^2. The data sample used corresponds to an integrated luminosity of 37 pb^-1. Total and differential cross sections as functions of the D* transverse momentum and pseudorapidity are presented in restricted kinematical regions and the data are compared with next-to-leading order (NLO) perturbative QCD calculations using the "massive charm" and "massless charm" schemes. The measured cross sections are generally above the NLO calculations, in particular in the forward (proton) direction. The large data sample also allows the study of dijet production associated with charm. A significant resolved as well as a direct photon component contribute to the cross section. Leading order QCD Monte Carlo calculations indicate that the resolved contribution arises from a significant charm component in the photon. A massive charm NLO parton level calculation yields lower cross sections compared to the measured results in a kinematic region where the resolved photon contribution is significant.Comment: 32 pages including 6 figure

    Measurement of Jet Shapes in Photoproduction at HERA

    Full text link
    The shape of jets produced in quasi-real photon-proton collisions at centre-of-mass energies in the range 134−277134-277 GeV has been measured using the hadronic energy flow. The measurement was done with the ZEUS detector at HERA. Jets are identified using a cone algorithm in the η−ϕ\eta - \phi plane with a cone radius of one unit. Measured jet shapes both in inclusive jet and dijet production with transverse energies ETjet>14E^{jet}_T>14 GeV are presented. The jet shape broadens as the jet pseudorapidity (ηjet\eta^{jet}) increases and narrows as ETjetE^{jet}_T increases. In dijet photoproduction, the jet shapes have been measured separately for samples dominated by resolved and by direct processes. Leading-logarithm parton-shower Monte Carlo calculations of resolved and direct processes describe well the measured jet shapes except for the inclusive production of jets with high ηjet\eta^{jet} and low ETjetE^{jet}_T. The observed broadening of the jet shape as ηjet\eta^{jet} increases is consistent with the predicted increase in the fraction of final state gluon jets.Comment: 29 pages including 9 figure

    The Atacama Cosmology Telescope: Cosmology from cross-correlations of unWISE galaxies and ACT DR6 CMB lensing

    Full text link
    We present tomographic measurements of structure growth using cross-correlations of Atacama Cosmology Telescope (ACT) DR6 and Planck CMB lensing maps with the unWISE Blue and Green galaxy samples, which span the redshift ranges 0.2â‰Čzâ‰Č1.10.2 \lesssim z \lesssim 1.1 and 0.3â‰Čzâ‰Č1.80.3 \lesssim z \lesssim 1.8, respectively. We improve on prior unWISE cross-correlations not just by making use of the new, high-precision ACT DR6 lensing maps, but also by including additional spectroscopic data for redshift calibration and by analysing our measurements with a more flexible theoretical model. An extensive suite of systematic and null tests within a blind analysis framework ensures that our results are robust. We determine the amplitude of matter fluctuations at low redshifts (z≃0.2−1.6z\simeq 0.2-1.6), finding S8â‰ĄÏƒ8(Ωm/0.3)0.5=0.813±0.021S_8 \equiv \sigma_8 (\Omega_m / 0.3)^{0.5} = 0.813 \pm 0.021 using the ACT cross-correlation alone and S8=0.810±0.015S_8 = 0.810 \pm 0.015 with a combination of Planck and ACT cross-correlations; these measurements are fully consistent with the predictions from primary CMB measurements assuming standard structure growth. The addition of Baryon Acoustic Oscillation data breaks the degeneracy between σ8\sigma_8 and Ωm\Omega_m, allowing us to measure σ8=0.813±0.020\sigma_8 = 0.813 \pm 0.020 from the cross-correlation of unWISE with ACT and σ8=0.813±0.015\sigma_8 = 0.813\pm 0.015 from the combination of cross-correlations with ACT and Planck. These results also agree with the expectations from primary CMB extrapolations in Λ\LambdaCDM cosmology; the consistency of σ8\sigma_8 derived from our two redshift samples at z∌0.6z \sim 0.6 and 1.11.1 provides a further check of our cosmological model. Our results suggest that structure formation on linear scales is well described by Λ\LambdaCDM even down to low redshifts zâ‰Č1z\lesssim 1.Comment: 73 pages (incl. 30 pages of appendices), 50 figures, 16 tables, to be submitted to ApJ. Watch G. S. Farren and A. Krolewski discuss the analysis and results under https://cosmologytalks.com/2023/09/11/act-unwis
    • 

    corecore