840 research outputs found

    Involving Motor Capabilities in the Formation of Sensory Space Representations

    Get PDF
    A goal of sensory coding is to capture features of sensory input that are behaviorally relevant. Therefore, a generic principle of sensory coding should take into account the motor capabilities of an agent. Up to now, unsupervised learning of sensory representations with respect to generic coding principles has been limited to passively received sensory input. Here we propose an algorithm that reorganizes an agent's representation of sensory space by maximizing the predictability of sensory state transitions given a motor action. We applied the algorithm to the sensory spaces of a number of simple, simulated agents with different motor parameters, moving in two-dimensional mazes. We find that the optimization algorithm generates compact, isotropic representations of space, comparable to hippocampal place fields. As expected, the size and spatial distribution of these place fields-like representations adapt to the motor parameters of the agent as well as to its environment. The representations prove to be well suited as a basis for path planning and navigation. They not only possess a high degree of state-transition predictability, but also are temporally stable. We conclude that the coding principle of predictability is a promising candidate for understanding place field formation as the result of sensorimotor reorganization

    Irf4-dependent CD103+CD11b+ dendritic cells and the intestinal microbiome regulate monocyte and macrophage activation and intestinal peristalsis in postoperative ileus

    Get PDF
    Objective: Postoperative ileus (POI), the most frequent complication after intestinal surgery, depends on dendritic cells (DCs) and macrophages. Here, we have investigated the mechanism that activates these cells and the contribution of the intestinal microbiota for POI induction.Design: POI was induced by manipulating the intestine of mice, which selectively lack DCs, monocytes or macrophages. The disease severity in the small and large intestine was analysed by determining the distribution of orally applied fluorescein isothiocyanate-dextran and by measuring the excretion time of a retrogradely inserted glass ball. The impact of the microbiota on intestinal peristalsis was evaluated after oral antibiotic treatment.Results: We found that Cd11c-Cre+ Irf4flox/flox mice lack CD103+CD11b+ DCs, a DC subset unique to the intestine whose function is poorly understood. Their absence in the intestinal muscularis reduced pathogenic inducible nitric oxide synthase (iNOS) production by monocytes and macrophages and ameliorated POI. Pathogenic iNOS was produced in the jejunum by resident Ly6C- macrophages and infiltrating chemokine receptor 2-dependent Ly6C+ monocytes, but in the colon only by the latter demonstrating differential tolerance mechanisms along the intestinal tract. Consistently, depletion of both cell subsets reduced small intestinal POI, whereas the depletion of Ly6C+ monocytes alone was sufficient to prevent large intestinal POI. The differential role of monocytes and macrophages in small and large intestinal POI suggested a potential role of the intestinal microbiota. Indeed, antibiotic treatment reduced iNOS levels and ameliorated POI.Conclusions: Our findings reveal that CD103+CD11b+ DCs and the intestinal microbiome are a prerequisite for the activation of intestinal monocytes and macrophages and for dysregulating intestinal motility in POI

    Multivariate calibration of energy-dispersive X-ray diffraction data for predicting the composition of pharmaceutical tablets in packaging

    Get PDF
    A system using energy-dispersive X-ray diffraction (EDXRD) has been developed and tested using multivariate calibration for the quantitative analysis of tablet-form mixtures of common pharmaceutical ingredients. A principal advantage of EDXRD over the more traditional and common angular dispersive X-ray diffraction technique (ADXRD) is the potential of EDXRD to analyse tablets within their packaging, due to the higher energy X-rays used. In the experiment, a series of caffeine, paracetamol and microcrystalline cellulose mixtures were prepared and pressed into tablets. EDXRD profiles were recorded on each sample and a principal component analysis (PCA) was carried out in both unpackaged and packaged scenarios. In both cases the first two principal components explained >98% of the between-sample variance. The PCA projected the sample profiles into two dimensional principal component space in close accordance to their ternary mixture design, demonstrating the discriminating potential of the EDXRD system. A partial least squares regression (PLSR) model was built with the samples and was validated using leave-one-out cross-validation. Low prediction errors of between 2% and 4% for both unpackaged and packaged tablets were obtained for all three chemical compounds. The prediction capability through packaging demonstrates a truly non-destructive method for quantifying tablet composition and demonstrates good potential for EDXRD to be applied in the field of counterfeit medicine screening and pharmaceutical quality control

    Model Evaluation Guidelines for Geomagnetic Index Predictions

    Full text link
    Geomagnetic indices are convenient quantities that distill the complicated physics of some region or aspect of near‐Earth space into a single parameter. Most of the best‐known indices are calculated from ground‐based magnetometer data sets, such as Dst, SYM‐H, Kp, AE, AL, and PC. Many models have been created that predict the values of these indices, often using solar wind measurements upstream from Earth as the input variables to the calculation. This document reviews the current state of models that predict geomagnetic indices and the methods used to assess their ability to reproduce the target index time series. These existing methods are synthesized into a baseline collection of metrics for benchmarking a new or updated geomagnetic index prediction model. These methods fall into two categories: (1) fit performance metrics such as root‐mean‐square error and mean absolute error that are applied to a time series comparison of model output and observations and (2) event detection performance metrics such as Heidke Skill Score and probability of detection that are derived from a contingency table that compares model and observation values exceeding (or not) a threshold value. A few examples of codes being used with this set of metrics are presented, and other aspects of metrics assessment best practices, limitations, and uncertainties are discussed, including several caveats to consider when using geomagnetic indices.Plain Language SummaryOne aspect of space weather is a magnetic signature across the surface of the Earth. The creation of this signal involves nonlinear interactions of electromagnetic forces on charged particles and can therefore be difficult to predict. The perturbations that space storms and other activity causes in some observation sets, however, are fairly regular in their pattern. Some of these measurements have been compiled together into a single value, a geomagnetic index. Several such indices exist, providing a global estimate of the activity in different parts of geospace. Models have been developed to predict the time series of these indices, and various statistical methods are used to assess their performance at reproducing the original index. Existing studies of geomagnetic indices, however, use different approaches to quantify the performance of the model. This document defines a standardized set of statistical analyses as a baseline set of comparison tools that are recommended to assess geomagnetic index prediction models. It also discusses best practices, limitations, uncertainties, and caveats to consider when conducting a model assessment.Key PointsWe review existing practices for assessing geomagnetic index prediction models and recommend a “standard set” of metricsAlong with fit performance metrics that use all data‐model pairs in their formulas, event detection performance metrics are recommendedOther aspects of metrics assessment best practices, limitations, uncertainties, and geomagnetic index caveats are also discussedPeer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/147764/1/swe20790_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/147764/2/swe20790.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/147764/3/swe20790-sup-0001-2018SW002067-SI.pd

    Correlation of tumor PD-L1 expression in different tissue types and outcome of PD-1-based immunotherapy in metastatic melanoma – analysis of the DeCOG prospective multicenter cohort study ADOREG/TRIM

    Get PDF
    Background PD-1-based immune checkpoint inhibition (ICI) is the major backbone of current melanoma therapy. Tumor PD-L1 expression represents one of few biomarkers predicting ICI therapy outcome. The objective of the present study was to systematically investigate whether the type of tumor tissue examined for PD-L1 expression has an impact on the correlation with ICI therapy outcome. Methods Pre-treatment tumor tissue was collected within the prospective DeCOG cohort study ADOREG/TRIM (CA209-578; NCT05750511) between February 2014 and May 2020 from 448 consecutive patients who received PD-1-based ICI for non-resectable metastatic melanoma. The primary study endpoint was best overall response (BOR), secondary endpoints were progression-free (PFS) and overall survival (OS). All endpoints were correlated with tumor PD-L1 expression (quantified with clone 28–8; cutoff ≥5%) and stratified by tissue type. Findings Tumor PD-L1 was determined in 95 primary tumors (PT; 36.8% positivity), 153 skin/subcutaneous (34.0% positivity), 115 lymph node (LN; 50.4% positivity), and 85 organ (40.8% positivity) metastases. Tumor PD-L1 correlated with BOR if determined in LN (OR = 0.319; 95% CI = 0.138–0.762; P = 0.010), but not in skin/subcutaneous metastases (OR = 0.656; 95% CI = 0.311–1.341; P = 0.26). PD-L1 positivity determined on LN metastases was associated with favorable survival (PFS, HR = 0.490; 95% CI = 0.310–0.775; P = 0.002; OS, HR = 0.519; 95% CI = 0.307–0.880; P = 0.014). PD-L1 positivity determined in PT (PFS, HR = 0.757; 95% CI = 0.467–1.226; P = 0.27; OS; HR = 0.528; 95% CI = 0.305–0.913; P = 0.032) was correlated with survival to a lesser extent. No relevant survival differences were detected by PD-L1 determined in skin/subcutaneous metastases (PFS, HR = 0.825; 95% CI = 0.555–1.226; P = 0.35; OS, HR = 1.083; 95% CI = 0.698–1.681; P = 0.72). Interpretation For PD-1-based immunotherapy in melanoma, tumor PD-L1 determined in LN metastases was stronger correlated with therapy outcome than that assessed in PT or organ metastases. PD-L1 determined in skin/subcutaneous metastases showed no outcome correlation and therefore should be used with caution for clinical decision making. Funding Bristol-Myers Squibb (ADOREG/TRIM, NCT05750511); German Research Foundation (DFG; Clinician Scientist Program UMEA); Else Kröner-Fresenius-Stiftung (EKFS; Medical Scientist Academy UMESciA)

    Impact of cognitive stimulation on ripples within human epileptic and non-epileptic hippocampus

    Get PDF
    Background: Until now there has been no way of distinguishing between physiological and epileptic hippocampal ripples in intracranial recordings. In the present study we addressed this by investigating the effect of cognitive stimulation on interictal high frequency oscillations in the ripple range (80-250 Hz) within epileptic (EH) and non-epileptic hippocampus (NH). Methods: We analyzed depth EEG recordings in 10 patients with intractable epilepsy, in whom hippocampal activity was recorded initially during quiet wakefulness and subsequently during a simple cognitive task. Using automated detection of ripples based on amplitude of the power envelope, we analyzed ripple rate (RR) in the cognitive and resting period, within EH and NH. Results: Compared to quiet wakefulness we observed a significant reduction of RR during cognitive stimulation in EH, while it remained statistically marginal in NH. Further, we investigated the direct impact of cognitive stimuli on ripples (i.e. immediately post-stimulus), which showed a transient statistically significant suppression of ripples in the first second after stimuli onset in NH only. Conclusion: Our results point to a differential reactivity of ripples within EH and NH to cognitive stimulation
    corecore