73 research outputs found

    Balancing Privacy and Progress in Artificial Intelligence: Anonymization in Histopathology for Biomedical Research and Education

    Full text link
    The advancement of biomedical research heavily relies on access to large amounts of medical data. In the case of histopathology, Whole Slide Images (WSI) and clinicopathological information are valuable for developing Artificial Intelligence (AI) algorithms for Digital Pathology (DP). Transferring medical data "as open as possible" enhances the usability of the data for secondary purposes but poses a risk to patient privacy. At the same time, existing regulations push towards keeping medical data "as closed as necessary" to avoid re-identification risks. Generally, these legal regulations require the removal of sensitive data but do not consider the possibility of data linkage attacks due to modern image-matching algorithms. In addition, the lack of standardization in DP makes it harder to establish a single solution for all formats of WSIs. These challenges raise problems for bio-informatics researchers in balancing privacy and progress while developing AI algorithms. This paper explores the legal regulations and terminologies for medical data-sharing. We review existing approaches and highlight challenges from the histopathological perspective. We also present a data-sharing guideline for histological data to foster multidisciplinary research and education.Comment: Accepted to FAIEMA 202

    What does your profile picture say about you? The accuracy of thin-slice personality judgments from social networking sites made at zero-acquaintance

    Get PDF
    The myocardium exhibits heterogeneous nature due to scarring after Myocardial Infarction (MI). In Cardiac Magnetic Resonance (CMR) imaging, Late Gadolinium (LG) contrast agent enhances the intensity of scarred area in the myocardium. In this paper, we propose a probability mapping technique using Texture and Intensity features to describe heterogeneous nature of the scarred myocardium in Cardiac Magnetic Resonance (CMR) images after Myocardial Infarction (MI). Scarred tissue and non-scarred tissue are represented with high and low probabilities, respectively. Intermediate values possibly indicate areas where the scarred and healthy tissues are interwoven. The probability map of scarred myocardium is calculated by using a probability function based on Bayes rule. Any set of features can be used in the probability function. In the present study, we demonstrate the use of two different types of features. One is based on the mean intensity of pixel and the other on underlying texture information of the scarred and non-scarred myocardium. Examples of probability maps computed using the mean intensity of pixel and the underlying texture information are presented. We hypothesize that the probability mapping of myocardium offers alternate visualization, possibly showing the details with physiological significance difficult to detect visually in the original CMR image. The probability mapping obtained from the two features provides a way to define different cardiac segments which offer a way to identify areas in the myocardium of diagnostic importance (like core and border areas in scarred myocardiu

    Assessment of sparse-based inpainting for retinal vessel removal

    Full text link
    [EN] Some important eye diseases, like macular degeneration or diabetic retinopathy, can induce changes visible on the retina, for example as lesions. Segmentation of lesions or extraction of textural features from the fundus images are possible steps towards automatic detection of such diseases which could facilitate screening as well as provide support for clinicians. For the task of detecting significant features, retinal blood vessels are considered as being interference on the retinal images. If these blood vessel structures could be suppressed, it might lead to a more accurate segmentation of retinal lesions as well as a better extraction of textural features to be used for pathology detection. This work proposes the use of sparse representations and dictionary learning techniques for retinal vessel inpainting. The performance of the algorithm is tested for greyscale and RGB images from the DRIVE and STARE public databases, employing different neighbourhoods and sparseness factors. Moreover, a comparison with the most common inpainting family, diffusion-based methods, is carried out. For this purpose, two different ways of assessing the quality of the inpainting are presented and used to evaluate the results of the non-artificial inpainting, i.e. where a reference image does not exist. The results suggest that the use of sparse-based inpainting performs very well for retinal blood vessels removal which will be useful for the future detection and classification of eye diseases. (C) 2017 Elsevier B.V. All rights reserved.This work was supported by NILS Science and Sustainability Programme (014-ABEL-IM-2013) and by the Ministerio de Economia y Competitividad of Spain, Project ACRIMA (TIN2013-46751-R). The work of Adrian Colomer has been supported by the Spanish Government under the FPI Grant BES-2014-067889.Colomer, A.; Naranjo Ornedo, V.; Engan, K.; Skretting, K. (2017). Assessment of sparse-based inpainting for retinal vessel removal. Signal Processing: Image Communication. 59:73-82. https://doi.org/10.1016/j.image.2017.03.018S73825

    Retinal Disease Screening through Local Binary Patterns

    Full text link
    © 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.”This work investigates discrimination capabilities in the texture of fundus images to differentiate between pathological and healthy images. For this purpose, the performance of Local Binary Patterns (LBP) as a texture descriptor for retinal images has been explored and compared with other descriptors such as LBP filtering (LBPF) and local phase quantization (LPQ). The goal is to distinguish between diabetic retinopathy (DR), agerelated macular degeneration (AMD) and normal fundus images analysing the texture of the retina background and avoiding a previous lesion segmentation stage. Five experiments (separating DR from normal, AMD from normal, pathological from normal, DR from AMD and the three different classes) were designed and validated with the proposed procedure obtaining promising results. For each experiment, several classifiers were tested. An average sensitivity and specificity higher than 0.86 in all the cases and almost of 1 and 0.99, respectively, for AMD detection were achieved. These results suggest that the method presented in this paper is a robust algorithm for describing retina texture and can be useful in a diagnosis aid system for retinal disease screening.This work was supported by NILS Science and Sustainability Programme (010-ABEL-IM-2013) and by the Ministerio de Economia y Competitividad of Spain, Project ACRIMA (TIN2013-46751-R). The work of A. Colomer was supported by the Spanish Government under the FPI Grant BES-2014-067889.Morales, S.; Engan, K.; Naranjo Ornedo, V.; Colomer, A. (2015). Retinal Disease Screening through Local Binary Patterns. IEEE Journal of Biomedical and Health Informatics. (99):1-8. https://doi.org/10.1109/JBHI.2015.2490798S189

    Real-Time Chest Compression Quality Measurements by Smartphone Camera

    Get PDF
    Out-of-hospital cardiac arrest (OHCA) is recognized as a global mortality challenge, and digital strategies could contribute to increase the chance of survival. In this paper, we investigate if cardiopulmonary resuscitation (CPR) quality measurement using smartphone video analysis in real-time is feasible for a range of conditions. With the use of a web-connected smartphone application which utilizes the smartphone camera, we detect inactivity and chest compressions and measure chest compression rate with real-time feedback to both the caller who performs chest compressions and over the web to the dispatcher who coaches the caller on chest compressions. The application estimates compression rate with 0.5 s update interval, time to first stable compression rate (TFSCR), active compression time (TC), hands-off time (TWC), average compression rate (ACR), and total number of compressions (NC). Four experiments were performed to test the accuracy of the calculated chest compression rate under different conditions, and a fifth experiment was done to test the accuracy of the CPR summary parameters TFSCR, TC, TWC, ACR, and NC. Average compression rate detection error was 2.7 compressions per minute (±5.0 cpm), the calculated chest compression rate was within ±10 cpm in 98% (±5.5) of the time, and the average error of the summary CPR parameters was 4.5% (±3.6). The results show that real-time chest compression quality measurement by smartphone camera in simulated cardiac arrest is feasible under the conditions tested.Real-Time Chest Compression Quality Measurements by Smartphone CamerapublishedVersio

    Semi-supervised tissue segmentation of histological images

    Get PDF
    Supervised learning of convolutional neural networks (CNN) used for image classification and segmentation has produced state-of-the art results, including in many medical image applications. In the medical field, making ground truth labels would typically require an expert opin ion, and a common problem is the lack of labeled data. Consequently, the models might not be general enough. Digitized histological microscopy images of tissue biopsies are very large, and detailed truth markings for tissue-type segmentation are scarce or non-existing. However, in many cases, large amounts of unlabeled data that could be exploited are readily accessible. Methods for semi-supervised learning exists, but are hardly explored in the context of computational pathology. This paper deals with semi-supervised learning on the application of tissue-type classifi cation in histological whole-slide images of urinary bladder cancer. Two semi-supervised approaches utilizing the unlabeled data in combination with a small set of labeled data is presented. A multiscale, tile-based segmentation technique is used to classify tissue into six different classes by the use of three individual CNNs. Each CNN is presented tissue at different magnification levels in order to detect different feature types, later fused in a fully-connected neural network. The two self-training ap proaches are: using probabilities and using a clustering technique. The clustering method performed best and increased the overall accuracy of the tissue tile classification model from 94.6% to 96% compared to using supervised learning with labeled data. In addition, the clustering method generated visually better segmentation images.publishedVersio

    Vision Transformers for Small Histological Datasets Learned through Knowledge Distillation

    Full text link
    Computational Pathology (CPATH) systems have the potential to automate diagnostic tasks. However, the artifacts on the digitized histological glass slides, known as Whole Slide Images (WSIs), may hamper the overall performance of CPATH systems. Deep Learning (DL) models such as Vision Transformers (ViTs) may detect and exclude artifacts before running the diagnostic algorithm. A simple way to develop robust and generalized ViTs is to train them on massive datasets. Unfortunately, acquiring large medical datasets is expensive and inconvenient, prompting the need for a generalized artifact detection method for WSIs. In this paper, we present a student-teacher recipe to improve the classification performance of ViT for the air bubbles detection task. ViT, trained under the student-teacher framework, boosts its performance by distilling existing knowledge from the high-capacity teacher model. Our best-performing ViT yields 0.961 and 0.911 F1-score and MCC, respectively, observing a 7% gain in MCC against stand-alone training. The proposed method presents a new perspective of leveraging knowledge distillation over transfer learning to encourage the use of customized transformers for efficient preprocessing pipelines in the CPATH systems.Comment: Accepted at PAKDD 202

    The Devil is in the Details: Whole Slide Image Acquisition and Processing for Artifacts Detection, Color Variation, and Data Augmentation: A Review

    Get PDF
    Whole Slide Images (WSI) are widely used in histopathology for research and the diagnosis of different types of cancer. The preparation and digitization of histological tissues leads to the introduction of artifacts and variations that need to be addressed before the tissues are analyzed. WSI preprocessing can significantly improve the performance of computational pathology systems and is often used to facilitate human or machine analysis. Color preprocessing techniques are frequently mentioned in the literature, while other areas are usually ignored. In this paper, we present a detailed study of the state-of-the-art in three different areas of WSI preprocessing: Artifacts detection, color variation, and the emerging field of pathology-specific data augmentation. We include a summary of evaluation techniques along with a discussion of possible limitations and future research directions for new methods.European Commission 860627Ministerio de Ciencia e Innovacion (MCIN)/Agencia Estatal de Investigacion (AEI) PID2019-105142RB-C22Fondo Europeo de Desarrollo Regional (FEDER)/Junta de Andalucia-Consejeria de Transformacion Economica, Industria, Conocimiento y Universidades B-TIC-324-UGR20Instituto de Salud Carlos III Spanish Government European Commission BES-2017-08158

    CT Perfusion is All We Need: 4D CNN Segmentation of Penumbra and Core in Patient With Suspected Ischemic Stroke

    Full text link
    Precise and fast prediction methods for ischemic areas comprised of dead tissue, core, and salvageable tissue, penumbra, in acute ischemic stroke (AIS) patients are of significant clinical interest. They play an essential role in improving diagnosis and treatment planning. Computed Tomography (CT) scan is one of the primary modalities for early assessment in patients with suspected AIS. CT Perfusion (CTP) is often used as a primary assessment to determine stroke location, severity, and volume of ischemic lesions. Current automatic segmentation methods for CTP mostly use already processed 3D parametric maps conventionally used for clinical interpretation by radiologists as input. Alternatively, the raw CTP data is used on a slice-by-slice basis as 2D+time input, where the spatial information over the volume is ignored. In addition, these methods are only interested in segmenting core regions, while predicting penumbra can be essential for treatment planning. This paper investigates different methods to utilize the entire 4D CTP as input to fully exploit the spatio-temporal information, leading us to propose a novel 4D convolution layer. Our comprehensive experiments on a local dataset of 152 patients divided into three groups show that our proposed models generate more precise results than other methods explored. Adopting the proposed 4D mJ-Net, a Dice Coefficient of 0.53 and 0.23 is achieved for segmenting penumbra and core areas, respectively. The code is available on https://github.com/Biomedical-Data-Analysis-Laboratory/4D-mJ-Net.git
    corecore