64 research outputs found

    Maritime threat response

    Get PDF
    This report was prepared by Systems Engineering and Analysis Cohort Nine (SEA-9) Maritime Threat Response, (MTR) team members.Background: The 2006 Naval Postgraduate School (NPS) Cross-Campus Integrated Study, titled “Maritime Threat Response” involved the combined effort of 7 NPS Systems Engineering students, 7 Singaporean Temasek Defense Systems Institute (TDSI) students, 12 students from the Total Ship Systems Engineering (TSSE) curriculum, and numerous NPS faculty members from different NPS departments. After receiving tasking provided by the Wayne E. Meyer Institute of Systems Engineering at NPS in support of the Office of the Assistant Secretary of Defense for Homeland Defense, the study examined ways to validate intelligence and respond to maritime terrorist attacks against United States coastal harbors and ports. Through assessment of likely harbors and waterways to base the study upon, the San Francisco Bay was selected as a representative test-bed for the integrated study. The NPS Systems Engineering and Analysis Cohort 9 (SEA-9) Maritime Threat Response (MTR) team, in conjunction with the TDSI students, used the Systems Engineering Lifecycle Process (SELP) [shown in Figure ES-1, p. xxiii ] as a systems engineering framework to conduct the multi-disciplinary study. While not actually fabricating any hardware, such a process was well-suited for tailoring to the team’s research efforts and project focus. The SELP was an iterative process used to bound and scope the MTR problem, determine needs, requirements, functions, and to design architecture alternatives to satisfy stakeholder needs and desires. The SoS approach taken [shown in Figure ES-2, p. xxiv ]enabled the team to apply a systematic approach to problem definition, needs analysis, requirements, analysis, functional analysis, and then architecture development and assessment.In the twenty-first century, the threat of asymmetric warfare in the form of terrorism is one of the most likely direct threats to the United States homeland. It has been recognized that perhaps the key element in protecting the continental United States from terrorist threats is obtaining intelligence of impending attacks in advance. Enormous amounts of resources are currently allocated to obtaining and parsing such intelligence. However, it remains a difficult problem to deal with such attacks once intelligence is obtained. In this context, the Maritime Threat Response Project has applied Systems Engineering processes to propose different cost-effective System of Systems (SoS) architecture solutions to surface-based terrorist threats emanating from the maritime domain. The project applied a five-year time horizon to provide near-term solutions to the prospective decision makers and take maximum advantage of commercial off-the-shelf (COTS) solutions and emphasize new Concepts of Operations (CONOPS) for existing systems. Results provided insight into requirements for interagency interactions in support of Maritime Security and demonstrated the criticality of timely and accurate intelligence in support of counterterror operations.This report was prepared for the Office of the Assistant Secretary of Defense for Homeland DefenseApproved for public release; distribution is unlimited

    Prognostic Value of Leucocyte Telomere Length in Acute Myocardial Infarction

    Get PDF
    Introduction: Leucocyte telomere length (LTL) has been described as a marker of biological age, endothelial dysfunction and atherosclerosis. The association between LTL and clinical characteristics of Asian patients, and their outcomes following acute myocardial infarction (AMI) have been inconclusive. Objective: To investigate the relationship between LTL and developing AMI, the association of LTL with inpatient and 30-day mortality, and the comparison to LTL with established AMI risk scores in predicting these outcomes. Methodology: 100 patients aged 30-70 years admitted with an AMI to a tertiary referral center between May-Oct 2017 were enrolled; these were matched with 100 non-AMI ('healthy') controls for gender and age (+/- 1 year). Clinical data was obtained prospectively; inpatient and 30-day outcomes documented. LTL was reflected by a well described variable called a tis ratio (TSR). The TSR was measured at enrolment using a quantitative PCR-based methods (qPCR) and results blinded to the clinician

    Induction of Tumor Cell Death through Targeting Tubulin and Evoking Dysregulation of Cell Cycle Regulatory Proteins by Multifunctional Cinnamaldehydes

    Get PDF
    Multifunctional trans-cinnamaldehyde (CA) and its analogs display anti-cancer properties, with 2-benzoyloxycinnamaldehyde (BCA) and 5-fluoro-2-hydroxycinnamaldehyde (FHCA) being identified as the ortho-substituted analogs that possess potent anti-tumor activities. In this study, BCA, FHCA and a novel analog 5-fluoro-2-benzoyloxycinnamaldehyde (FBCA), were demonstrated to decrease growth and colony formation of human colon-derived HCT 116 and mammary-derived MCF-7 carcinoma cells under non-adhesive conditions. The 2-benzoyloxy and 5-fluoro substituents rendered FBCA more potent than BCA and equipotent to FHCA. The cellular events by which these cinnamaldehydes caused G2/M phase arrest and halted proliferation of HCT 116 cells were thereby investigated. Lack of significant accumulation of mitosis marker phospho-histone H3 in cinnamaldehyde-treated cells indicated that the analogs arrested cells in G2 phase. G2 arrest was brought about partly by cinnamaldehyde-mediated depletion of cell cycle proteins involved in regulating G2 to M transition and spindle assembly, namely cdk1, cdc25C, mad2, cdc20 and survivin. Cyclin B1 levels were found to be increased, which in the absence of active cdk1, would fail to drive cells into M phase. Concentrations of cinnamaldehydes that brought about dysregulation of levels of cell cycle proteins also caused tubulin aggregation, as evident from immunodetection of dose-dependent tubulin accumulation in the insoluble cell lysate fractions. In a cell-free system, reduced biotin-conjugated iodoacetamide (BIAM) labeling of tubulin protein pretreated with cinnamaldehydes was indicative of drug interaction with the sulfhydryl groups in tubulin. In conclusion, cinnamaldehydes treatment at proapoptotic concentrations caused tubulin aggregation and dysegulation of cell cycle regulatory proteins cdk1 and cdc25C that contributed at least in part to arresting cells at G2 phase, resulting in apoptotic cell death characterized by emergence of cleaved forms of caspase 3 and poly (ADP-ribose) polymerase (PARP). Results presented in this study have thus provided further insights into the intricate network of cellular events by which cinnamaldehydes induce tumor cell death

    Multiancestry analysis of the HLA locus in Alzheimer’s and Parkinson’s diseases uncovers a shared adaptive immune response mediated by HLA-DRB1*04 subtypes

    Get PDF
    Across multiancestry groups, we analyzed Human Leukocyte Antigen (HLA) associations in over 176,000 individuals with Parkinson’s disease (PD) and Alzheimer’s disease (AD) versus controls. We demonstrate that the two diseases share the same protective association at the HLA locus. HLA-specific fine-mapping showed that hierarchical protective effects of HLA-DRB1*04 subtypes best accounted for the association, strongest with HLA-DRB1*04:04 and HLA-DRB1*04:07, and intermediary with HLA-DRB1*04:01 and HLA-DRB1*04:03. The same signal was associated with decreased neurofibrillary tangles in postmortem brains and was associated with reduced tau levels in cerebrospinal fluid and to a lower extent with increased Aβ42. Protective HLA-DRB1*04 subtypes strongly bound the aggregation-prone tau PHF6 sequence, however only when acetylated at a lysine (K311), a common posttranslational modification central to tau aggregation. An HLA-DRB1*04-mediated adaptive immune response decreases PD and AD risks, potentially by acting against tau, offering the possibility of therapeutic avenues

    Development of antitumour quinols : a mechanistic approach

    No full text
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Trend of outsourcing internal audit

    No full text
    75 p.The purpose of this report is to find out the trend of outsourcing of an organisation's Internal Audit Function (whether wholly or partially) to an outside firm. By outsourcing, we mean that the organisation "engages an external party to provide services or products previously provided by an internal source" [IIA, 1996]. We will also examine why certain organisations outsource while others chose not to.ACCOUNTANC

    Design, Synthesis, and Biological Evaluation of Coupled Bioactive Scaffolds as Potential Anticancer Agents for Dual Targeting of Dihydrofolate Reductase and Thioredoxin Reductase

    No full text
    The dihydrofolate reductase (DHFR) and thioredoxin reductase (TrxR) enzymes are involved in the process of tumor cell growth and survival. The 4,6-diamino-1,2-dihydro-1,3,5-triazine scaffold is well-established as a useful scaffold for DHFR inhibition, while chalcones have been reported to be inhibitors of TrxR. In this study, 15 novel compounds designed by the structural combination of the 4,6-diamino-1,2-dihydro-1,3,5-triazine and chalcone scaffolds via a diether linker were successfully synthesized and characterized. All of the compounds demonstrated dual inhibition against DHFR and TrxR when they were assessed by in vitro enzyme assays. The compounds also exhibited antiproliferative activity against the MCF-7 and HCT116 cells. The more potent analogs <b>14</b> and <b>15</b> were found to inhibit cellular DHFR and TrxR activities in HCT116 cells. Therefore, this study provided compelling evidence that <b>14</b> and <b>15</b> could exert their anticancer property via multitarget inhibition at the cellular level

    Inhibition of the human thioredoxin system - A molecular mechanism of mercury toxicity

    No full text
    Mercury toxicity mediated by different forms of mercury is a major health problem; however, the molecular mechanisms underlying toxicity remain elusive. We analyzed the effects of mercuric chloride (HgCl2) and monomethylmercury (MeHg) on the proteins of the mammalian thioredoxin system, thioredoxin reductase (TrxR) and thioredoxin (Trx), and of the glutaredoxin system, glutathione reductase (GR) and glutaredoxin (Grx). HgCl2 and MeHg inhibited recombinant rat TrxR with IC50 values of 7.2 and 19.7 nM, respectively. Fully reduced human Trx1 bound mercury and lost all five free thiols and activity after incubation with HgCl2 or MeHg, but only HgCl2 generated dimers. Mass spectra analysis demonstrated binding of 2.5 mol of Hg2+ and 5 mol of MeHg+/mol of Trx1 with the very strong Hg2+ complexes involving active site and structural disulfides. Inhibition of both TrxR and Trx activity was observed in HeLa and HEK 293 cells treated with HgCl2 or MeHg. GR was inhibited by HgCl2 and MeHg in vitro, but no decrease in GR activity was detected in cell extracts treated with mercurials. Human Grx1 showed similar reactivity as Trx1 with both mercurial compounds, with the loss of all free thiols and Grx dimerization in the presence of HgCl2, but no inhibition of Grx activity was observed in lysates of HeLa cells exposed to mercury. Overall, mercury inhibition was selective toward the thioredoxin system. In particular, the remarkable potency of the mercury compounds to bind to the selenol-thiol in the active site of TrxR should be a major molecular mechanism of mercury toxicity
    corecore