168 research outputs found

    Optimization of multipoint phase retrieval in edge illumination X-ray imaging: A theoretical and experimental analysis

    Get PDF
    Purpose: In this work, an analytical model describing the noise in the retrieved three contrast channels, transmission, refraction, and ultra small-angle scattering, obtained with edge illumination X-ray phase-based imaging system is presented and compared to experimental data. Methods: In EI, images acquired at different displacements of the presample mask (i.e., different illumination levels referred to as points on the “illumination curve”), followed by pixel-wise curve fitting, are exploited to quantitatively retrieve the three contrast channels. Therefore, the noise in the final image will depend on the error associated with the fitting process. We use a model based on the derivation of the standard error on fitted parameters, which relies on the calculation of the covariance matrix, to estimate the noise and the cross-channel correlation as a function of the position of the sampling points. In particular, we investigated the most common cases of 3 and 5 sampling points. In addition, simulations have been used to better understand the role of the integration time for each sampling point. Finally, the model is validated by comparison with the experimental data acquired with an edge illumination setup based on a tungsten rotating anode X-ray source and a photon counting detector. Results: We found a good match between the predictions of the model and the experimental data. In particular, for the investigated cases, an arrangement of the sampling points leading to minimum noise and cross-channel correlation can be found. Simulations revealed that, given a fixed overall scanning time, its distribution into the smallest possible number of sampling points needed for phase retrieval leads to minimum noise thanks to higher statistics per point. Conclusions: This work presents an analytical model describing the noise in the various contrast channels retrieved in edge illumination as a function of the illumination curve sampling. In particular, an optimal sampling scheme leading to minimum noise has been determined for the case where 3 or 5 sampling points are used, which represent two of the most common acquisition schemes. In addition, the correlation between noise in the different channels and the role of the number of points and exposure time have been also investigated. In general, our results suggest a series of procedures that should be followed in order to optimize the experimental acquisitions

    Characterization of fast magnetosonic waves driven by interaction between magnetic fields and compact toroids

    Full text link
    Magnetosonic waves are low-frequency, linearly polarized magnetohydrodynamic (MHD) waves that can be excited in any electrically conducting fluid permeated by a magnetic field. They are commonly found in space, responsible for many well-known features, such as heating of the solar corona and acceleration of energetic electrons in Earth's inner magnetosphere. In this work, we present observations of magnetosonic waves driven by injecting compact toroid (CT) plasmas into a static Helmholtz magnetic field at the Big Red Ball (BRB) Facility at Wisconsin Plasma Physics Laboratory (WiPPL). We first identify the wave modes by comparing the experimental results with the MHD theory, and then study how factors such as the background magnetic field affect the wave properties. Since this experiment is part of an ongoing effort of forming a target plasma with tangled magnetic fields as a novel fusion fuel for magneto-inertial fusion (MIF, aka magnetized target fusion), we also discuss a future possible path of forming the target plasma based on our current results

    Influences of Psychological Traits and PROP Taster Status on Familiarity with and Choice of Phenol-Rich Foods and Beverages

    Get PDF
    Plant phenolics are powerful antioxidants and free radical scavengers that can contribute to the healthy functional properties of plant-based food and beverages. Thus, dietary behaviours rich in plant-based food and beverages are encouraged. However, it is well-known that the bitter taste and other low-appealing sensory properties that characterize vegetables and some other plant-based foods act as an innate barrier for their acceptance. The aim of this study was to investigate the influence of psychological traits and PROP status (the responsiveness to bitter taste of 6-n- propylthiouracil) on the choice of and familiarity with phenol-rich vegetables and beverages varying in recalled level of bitterness and astringency. Study 1 aimed at assessing the variations of the sensory properties of vegetable and coffee/tea items with two check-all-that-apply (CATA) questionnaires (n = 201 and n = 188 individuals, respectively). Study 2 aimed at investigating how sensitivity to punishment, to reward, and to disgust, food neophobia, private body consciousness, alexithymia, and PROP responsiveness affect choice and familiarity with phenol-rich foods (n = 1200 individuals). A Choice Index was calculated for vegetables (CV) and coffee/tea (CC) as a mean of the choices of the more bitter/astringent option of the pairs and four Familiarity Indices were computed for vegetables (FV) and coffee/tea (FC), higher (+) or lower (-) in bitterness and astringency. Subjects higher in food neophobia, sensitivity to punishment or sensitivity to disgust reported significantly lower choice indices than individuals lower in these traits, meaning that they systematically opted for the least bitter/astringent option within the pairs. Familiarity with vegetables was lower in individuals high in sensitivity to punishment, in food neophobia and in alexithymia, irrespective of their sensory properties. The Familiarity Index with coffee/tea characterized by higher bitterness and astringency was lower in individuals high in food neophobia, sensitivity to disgust, and alexithymia. No significant effect of PROP was found on any indices. The proposed approach based on product grouping according to differences in bitterness and astringency allowed the investigation of the role of individual differences in chemosensory perception and of psychological traits as modulators of phenol-rich foods preference and consumption

    Relationships between intensity and liking for chemosensory stimuli in food models: a large-scale consumer segmentation

    Get PDF
    16openInternationalBothThis study, which was conducted as part of the Italian Taste project, was aimed at exploring the relationship between actual liking and sensory perception in four food models. Each food model was spiked with four levels of prototypical tastant (i.e., citric acid, sucrose, sodium chloride, capsaicin) to elicit a target sensation (TS) at an increasing perceived intensity. Participants (N = 2258; 59% women, aged 18–60) provided demographic information, a stated liking for 40 different foods/beverages, and their responsiveness to tastants in water. A food-specific Pearson’s coefficient was calculated individually to estimate the relationship between actual liking and TS responsiveness. Considering the relationship magnitude, consumers were grouped into four food-specific clusters, depending on whether they showed a strong negative (SNC), a weak negative (WNC), a weak positive (WPC), or a strong positive correlation (SPC). Overall, the degree of liking raised in parallel with sweetness responsiveness, fell as sourness and pungency perception increased, and showed an inverted U-shape relationship with saltiness. The SNC clusters generally perceived TSs at higher intensities, except for sourness. Clusters were validated by associating the level of stated liking towards food/beverages; however, some unexpected indications emerged: adding sugar to coffee or preferring spicy foods differentiated those presenting positive correlations from those showing negative correlations. Our findings constitute a step towards a more comprehensive understanding of food preferences.openEndrizzi, I.; Cliceri, D.; Menghi, L.; Aprea, E.; Charles, M.; Monteleone, E.; Dinnella, C.; Spinelli, S.; Pagliarini, E.; Laureati, M.; Torri, L.; Bendini, A.; Toschi, T.G.; Sinesio, F.; Predieri, S.; Gasperi, F.Endrizzi, I.; Cliceri, D.; Menghi, L.; Aprea, E.; Charles, M.; Monteleone, E.; Dinnella, C.; Spinelli, S.; Pagliarini, E.; Laureati, M.; Torri, L.; Bendini, A.; Toschi, T.G.; Sinesio, F.; Predieri, S.; Gasperi, F

    Detection of involved margins in breast specimens with X-ray phase-contrast computed tomography.

    Get PDF
    Margins of wide local excisions in breast conserving surgery are tested through histology, which can delay results by days and lead to second operations. Detection of margin involvement intraoperatively would allow the removal of additional tissue during the same intervention. X-ray phase contrast imaging (XPCI) provides soft tissue sensitivity superior to conventional X-rays: we propose its use to detect margin involvement intraoperatively. We have developed a system that can perform phase-based computed tomography (CT) scans in minutes, used it to image 101 specimens approximately half of which contained neoplastic lesions, and compared results against those of a commercial system. Histological analysis was carried out on all specimens and used as the gold standard. XPCI-CT showed higher sensitivity (83%, 95% CI 69-92%) than conventional specimen imaging (32%, 95% CI 20-49%) for detection of lesions at margin, and comparable specificity (83%, 95% CI 70-92% vs 86%, 95% CI 73-93%). Within the limits of this study, in particular that specimens obtained from surplus tissue typically contain small lesions which makes detection more difficult for both methods, we believe it likely that the observed increase in sensitivity will lead to a comparable reduction in the number of re-operations

    Detection of involved margins in breast specimens with x-ray phase-contrast computed tomography

    Get PDF
    Margins of wide local excisions in breast conserving surgery are tested through histology, which can delay results by days and lead to second operations. Detection of margin involvement intraoperatively would allow the removal of additional tissue during the same intervention. X-ray phase contrast imaging (XPCI) provides soft tissue sensitivity superior to conventional X-rays: we propose its use to detect margin involvement intraoperatively. We have developed a system that can perform phase-based computed tomography (CT) scans in minutes, used it to image 101 specimens approximately half of which contained neoplastic lesions, and compared results against those of a commercial system. Histological analysis was carried out on all specimens and used as the gold standard. XPCI-CT showed higher sensitivity (83%, 95% CI 69–92%) than conventional specimen imaging (32%, 95% CI 20–49%) for detection of lesions at margin, and comparable specificity (83%, 95% CI 70–92% vs 86%, 95% CI 73–93%). Within the limits of this study, in particular that specimens obtained from surplus tissue typically contain small lesions which makes detection more difficult for both methods, we believe it likely that the observed increase in sensitivity will lead to a comparable reduction in the number of re-operations

    Leadership As We Know It

    Get PDF
    Leadership as We Know it is a collection of insights into modern leadership compiled by graduate students in Winona State University’s Leadership Education program during the Spring 2019 semester in a course aptly titled, Change Leadership. Each chapter was penned by one of 20 unique class members who offer their vision of leadership based upon their eclectic personal backgrounds and professional experiences, whose fields include athletics, business, education, and more. These diverse narratives offer something for everyone; whether it be a veteran or blossoming leader eager to continue their growth and evolution. Leadership as We Know it provides accounts from seasoned professionals who oversee their own organizational departments as well as emerging leaders just beginning their careers. Throughout these unique stories, clear patterns will emerge for the reader in what it takes to inspire change and provide authentic leadership for followers.https://openriver.winona.edu/leadershipeducationbooks/1003/thumbnail.jp

    Volumetric high-resolution X-ray phase-contrast virtual histology of breast specimens with a compact laboratory system

    Get PDF
    The assessment of margin involvement is a fundamental task in breast conserving surgery to prevent recurrences and reoperations. It is usually performed through histology, which makes the process time consuming and can prevent the complete volumetric analysis of large specimens. X-ray phase contrast tomography combines high resolution, sufficient penetration depth and high soft tissue contrast, and can therefore provide a potential solution to this problem. In this work, we used a high-resolution implementation of the edge illumination X-ray phase contrast tomography based on "pixel-skipping" X-ray masks and sample dithering, to provide high definition virtual slices of breast specimens. The scanner was originally designed for intra-operative applications in which short scanning times were prioritised over spatial resolution; however, thanks to the versatility of edge illumination, high-resolution capabilities can be obtained with the same system simply by swapping x-ray masks without this imposing a reduction in the available field of view. This makes possible an improved visibility of fine tissue strands, enabling a direct comparison of selected CT slices with histology, and providing a tool to identify suspect features in large specimens before slicing. Combined with our previous results on fast specimen scanning, this works paves the way for the design of a multi-resolution EI scanner providing intra-operative capabilities as well as serving as a digital pathology system

    An assessment of multimodal imaging of subsurface text in mummy cartonnage using surrogate papyrus phantoms

    Get PDF
    Ancient Egyptian mummies were often covered with an outer casing, panels and masks made from cartonnage: a lightweight material made from linen, plaster, and recycled papyrus held together with adhesive. Egyptologists, papyrologists, and historians aim to recover and read extant text on the papyrus contained within cartonnage layers, but some methods, such as dissolving mummy casings, are destructive. The use of an advanced range of different imaging modalities was investigated to test the feasibility of non-destructive approaches applied to multi-layered papyrus found in ancient Egyptian mummy cartonnage. Eight different techniques were compared by imaging four synthetic phantoms designed to provide robust, well-understood, yet relevant sample standards using modern papyrus and replica inks. The techniques include optical (multispectral imaging with reflection and transillumination, and optical coherence tomography), X-ray (X-ray fluorescence imaging, X-ray fluorescence spectroscopy, X-ray micro computed tomography and phase contrast X-ray) and terahertz-based approaches. Optical imaging techniques were able to detect inks on all four phantoms, but were unable to significantly penetrate papyrus. X-ray-based techniques were sensitive to iron-based inks with excellent penetration but were not able to detect carbon-based inks. However, using terahertz imaging, it was possible to detect carbon-based inks with good penetration but with less sensitivity to iron-based inks. The phantoms allowed reliable and repeatable tests to be made at multiple sites on three continents. The tests demonstrated that each imaging modality needs to be optimised for this particular application: it is, in general, not sufficient to repurpose an existing device without modification. Furthermore, it is likely that no single imaging technique will to be able to robustly detect and enable the reading of text within ancient Egyptian mummy cartonnage. However, by carefully selecting, optimising and combining techniques, text contained within these fragile and rare artefacts may eventually be open to non-destructive imaging, identification, and interpretation
    corecore