2,708 research outputs found

    A new proof of the Vorono\"i summation formula

    Full text link
    We present a short alternative proof of the Vorono\"i summation formula which plays an important role in Dirichlet's divisor problem and has recently found an application in physics as a trace formula for a Schr\"odinger operator on a non-compact quantum graph \mathfrak{G} [S. Egger n\'e Endres and F. Steiner, J. Phys. A: Math. Theor. 44 (2011) 185202 (44pp)]. As a byproduct we give a new proof of a non-trivial identity for a particular Lambert series which involves the divisor function d(n) and is identical with the trace of the Euclidean wave group of the Laplacian on the infinite graph \mathfrak{G}.Comment: Enlarged version of the published article J. Phys. A: Math. Theor. 44 (2011) 225302 (11pp

    Study of interaction of low dose power source radiation fields with selected space scientific instruments Quarterly progress report

    Get PDF
    Interaction of low dose power source radiation fields with selected space scientific instrument

    Comment on "Quantum Monte Carlo Evidence for Superconductivity in the Three-Band Hubbard Model in Two Dimensions"

    Full text link
    In a recent Letter, Kuroki and Aoki [Phys. Rev. Lett. 76, 440 (1996)] presented quantum Monte-Carlo (QMC) results for pairing correlations in the three-band Hubbard model, which describes the Cu-d_{x^2-y^2} and O-p_{x,y} orbitals present in the CuO_2 planes of high-T_c materials. In this comment we argue that (i) the used parameter set is not appropriate for the description of high-T_c materials since it does not satisfy the minimal requirement of a charge-transfer gap at half-filling, and (ii) the observed increase in the d_{x^2-y^2} channel is dominantly produced by the pair-field correlations without the vertex part. Hence, the claim of evidence of ODLRO is not justified.Comment: 1 page latex and 2 eps-figures, uses epsfig, submitted to PR

    Friedel oscillations induced by non-magnetic impurities in the two-dimensional Hubbard model

    Full text link
    We study the interplay of correlations and disorder using an unrestricted Slave-Boson technique in real space. Within the saddle-point approximation, we find Friedel oscillations of the charge density in the vicinity of a nonmagnetic impurity, in agreement with numerical simulations. The corresponding amplitudes are suppressed by repulsive interactions, while attractive correlations lead to a charge-density-wave enhancement. In addition, we investigate the spatial dependence of the local magnetic moment and the formation of a magnetic state at the impurity site.Comment: 9 pages, RevTeX, includes 8 figure

    Isospin properties of electric dipole excitations in 48Ca

    Get PDF
    Two different experimental approaches were combined to study the electric dipole strength in the doubly-magic nucleus 48Ca below the neutron threshold. Real-photon scattering experiments using bremsstrahlung up to 9.9 MeV and nearly mono-energetic linearly polarized photons with energies between 6.6 and 9.51 MeV provided strength distribution and parities, and an (\alpha,\alpha'\gamma) experiment at E_{\alpha}=136 MeV gave cross sections for an isoscalar probe. The unexpected difference observed in the dipole response is compared to calculations using the first-order random-phase approximation and points to an energy-dependent isospin character. A strong isoscalar state at 7.6 MeV was identified for the first time supporting a recent theoretical prediction.Comment: 6 pages, 5 figures, as accepted in Phys. Lett.

    Complex microwave conductivity of Na-DNA powders

    Full text link
    We report the complex microwave conductivity, σ=σ1iσ2\sigma=\sigma_1-i\sigma_2, of Na-DNA powders, which was measured from 80 K to 300 K by using a microwave cavity perturbation technique. We found that the magnitude of σ1\sigma_1 near room temperature was much larger than the contribution of the surrounding water molecules, and that the decrease of σ1\sigma_1 with decreasing temperature was sufficiently stronger than that of the conduction of counterions. These results clearly suggest that the electrical conduction of Na-DNA is intrinsically semiconductive.Comment: 16 pages, 7 figure

    Using Synchronic and Diachronic Relations for Summarizing Multiple Documents Describing Evolving Events

    Full text link
    In this paper we present a fresh look at the problem of summarizing evolving events from multiple sources. After a discussion concerning the nature of evolving events we introduce a distinction between linearly and non-linearly evolving events. We present then a general methodology for the automatic creation of summaries from evolving events. At its heart lie the notions of Synchronic and Diachronic cross-document Relations (SDRs), whose aim is the identification of similarities and differences between sources, from a synchronical and diachronical perspective. SDRs do not connect documents or textual elements found therein, but structures one might call messages. Applying this methodology will yield a set of messages and relations, SDRs, connecting them, that is a graph which we call grid. We will show how such a grid can be considered as the starting point of a Natural Language Generation System. The methodology is evaluated in two case-studies, one for linearly evolving events (descriptions of football matches) and another one for non-linearly evolving events (terrorist incidents involving hostages). In both cases we evaluate the results produced by our computational systems.Comment: 45 pages, 6 figures. To appear in the Journal of Intelligent Information System

    Dynamics of an SO(5) symmetric ladder model

    Full text link
    We discuss properties of an exactly SO(5) symmetric ladder model. In the strong coupling limit we demonstrate how the SO(3)-symmetric description of spin ladders in terms of bond Bosons can be upgraded to an SO(5)-symmetric bond-Boson model, which provides a particularly simple example for the concept of SO(5) symmetry. Based on this representation we show that antiferro- magnetism on one hand and superconductivity on the other hand can be understood as condensation of either magnetic or charged Bosons into an RVB vacuum. We identify exact eigenstates of a finite cluster with general multiplets of the SO(5) group, and present numerical results for the single particle spectra and spin/charge correlation functions of the SO(5)-symmetric model and identify `fingerprints' of SO(5) symmetry in these. In particluar we show that SO(5) symmetry implies a `generalized rigid band behavior' of the photoemission spectrum, i.e. spectra for the doped case are rigorously identical to spectra for spin-polarized states at half-filling. We discuss the problem of adiabatic continuity between the SO(5) symmetric ladder and the actual t-J ladder and demonstrate the feasibility of a `Landau mapping' between the two models.Comment: Revtex-file, 16 pages with 15 eps-figures. Hardcopies of Figures (or the entire manuscript) obtainable by e-mail request to [email protected]
    corecore