26 research outputs found
Evaluation of In2Care mosquito stations for suppression of the Australian backyard mosquito, Aedes notoscriptus (Diptera: Culicidae)
Aedes notoscriptus (Skuse) is a container-inhabiting mosquito endemic to Australia that vectors arboviruses and is suspected to transmit Mycobacterium ulcerans, the cause of Buruli ulcer. We evaluated the effectiveness of the In2Care station, which suppresses mosquito populations via the entomopathogenic fungus, Beauveria bassiana, and the insect growth regulator pyriproxyfen, the latter of which is autodisseminated among larval habitats by contaminated mosquitoes. A field trial was conducted using 110 In2Care stations in a 50,000 m2 area and results were compared to 4 control areas that did not receive the treatment. Efficacy was evaluated by comparing egg counts and measuring larvicidal impact in surrounding breeding sites. Laboratory experiments validated the effect of B. bassiana on adult survival. Results of this field trial indicate that, 6 wk after the In2Care stations were deployed, treatment site ovitraps contained 43% fewer eggs than control site ovitraps, and 33% fewer eggs after 10 wk, suggesting that the In2Care station was able to reduce the egg density of Ae. notoscriptus. Population reduction remained evident for up to 3 wk after In2Care stations were removed. Treatment site ovitraps had significantly fewer Ae. notoscriptus eclosing than control site ovitraps, confirming the pyriproxyfen autodissemination feature of the stations. An average reduction of 50% in adult eclosion was achieved. Exposure to B. bassiana resulted in four-times higher mortality among adult mosquitoes. Additionally, using fresh In2Care nettings led to an 88% decrease in average survival compared to 4-wk-old nettings. The use of In2Care stations has potential for suppressing Ae. notoscriptus egg density.</p
Insecticide resistance status of Aedes aegypti and Aedes albopictus mosquitoes in Papua New Guinea
Background: Aedes aegypti and Ae. albopictus are important vectors of infectious diseases, especially those caused by arboviruses such as dengue, chikungunya and Zika. Aedes aegypti is very well adapted to urban environments, whereas Ae. albopictus inhabits more rural settings. Pyrethroid resistance is widespread in these vectors, but limited data exist from the Southwest Pacific Region, especially from Melanesia. While Aedes vector ecology is well documented in Australia, where incursion of Ae. albopictus and pyrethroid resistance have so far been prevented, almost nothing is known about Aedes populations in neighbouring Papua New Guinea (PNG). With pyrethroid resistance documented in parts of Indonesia but not in Australia, it is important to determine the distribution of susceptible and resistant Aedes populations in this region.
Methods: The present study was aimed at assessing Aedes populations for insecticide resistance in Madang and Port Moresby, located on the north and south coasts of PNG, respectively. Mosquitoes were collected using ovitraps and reared in an insectary. Standard WHO bioassays using insecticide-treated filter papers were conducted on a total of 253 Ae. aegypti and 768 Ae. albopictus adult mosquitoes. Subsets of samples from both species (55 Ae. aegypti and 48 Ae. albopictus) were screened for knockdown resistance mutations in the voltage-sensitive sodium channel (Vssc) gene, the target site of pyrethroid insecticides.
Results: High levels of resistance against pyrethroids were identified in Ae. aegypti from Madang and Port Moresby. Aedes albopictus exhibited susceptibility to pyrethroids, but moderate levels of resistance to DDT. Mutations associated with pyrethroid resistance were detected in all Ae. aegypti samples screened. Some genotypes found in the present study had been observed previously in Indonesia. No Vssc mutations associated with pyrethroid resistance were found in the Ae. albopictus samples.
Conclusions: To our knowledge, this is the first report of pyrethroid resistance in Ae. aegypti mosquitoes in PNG. Interestingly, usage of insecticides in PNG is low, apart from long-lasting insecticidal nets distributed for malaria control. Further investigations on how these resistant Ae. aegypti mosquito populations arose in PNG and how they are being sustained are warranted
Insecticide resistance in malaria and arbovirus vectors in Papua New Guinea, 2017–2022
Background: Insecticide resistance (IR) monitoring is essential for evidence-based control of mosquito-borne diseases. While widespread pyrethroid resistance in Anopheles and Aedes species has been described in many countries, data for Papua New Guinea (PNG) are limited. Available data indicate that the local Anopheles populations in PNG remain pyrethroid-susceptible, making regular IR monitoring even more important. In addition, Aedes aegypti pyrethroid resistance has been described in PNG. Here, Anopheles and Aedes IR monitoring data generated from across PNG between 2017 and 2022 are presented.
Methods: Mosquito larvae were collected in larval habitat surveys and through ovitraps. Mosquitoes were reared to adults and tested using standard WHO susceptibility bioassays. DNA from a subset of Aedes mosquitoes was sequenced to analyse the voltage-sensitive sodium channel (Vssc) region for any resistance-related mutations.
Results: Approximately 20,000 adult female mosquitoes from nine PNG provinces were tested. Anopheles punctulatus sensu lato mosquitoes were susceptible to pyrethroids but there were signs of reduced mortality in some areas. Some Anopheles populations were also resistant to DDT. Tests also showed that Aedes. aegypti in PNG are resistant to pyrethroids and DDT and that there was also likelihood of bendiocarb resistance. A range of Vssc resistance mutations were identified. Aedes albopictus were DDT resistant and were likely developing pyrethroid resistance, given a low frequency of Vssc mutations was observed.
Conclusions: Aedes aegypti is highly pyrethroid resistant and also shows signs of resistance against carbamates in PNG. Anopheles punctulatus s.l. and Ae. albopictus populations exhibit low levels of resistance against pyrethroids and DDT in some areas. Pyrethroid-only bed nets are currently the only programmatic vector control tool used in PNG. It is important to continue to monitor IR in PNG and develop proactive insecticide resistance management strategies in primary disease vectors to retain pyrethroid susceptibility especially in the malaria vectors for as long as possible
Characterization of sodium channel mutations in the dengue vector mosquitoes Aedes aegypti and Aedes albopictus within the context of ongoing Wolbachia releases in Kuala Lumpur, Malaysia
Specific sodium channel gene mutations confer target site resistance to pyrethroid insecticides in mosquitoes and other insects. In Aedes mosquito species, multiple mutations that contribute to resistance vary in their importance around the world. Here, we characterize voltage sensitive sodium channel (Vssc) mutations in populations of Aedesaegypti from Kuala Lumpur, Malaysia, and look at their persistence in populations affected by ongoing Wolbachia releases (a dengue control measure). We also describe a Vssc mutation in Aedesalbopictus (F1534L) found for the first time in Malaysia. We show that there are three predominant Vssc haplotypes in Aedesaegypti in this region, which all persist with regular backcrossing, thereby maintaining the original genetic composition of the populations. We identify changes in genotype frequency in closed populations of Ae. aegypti maintained for multiple generations in laboratory culture, suggesting different fitness costs associated with the genotypes, some of which may be associated with the sex of the mosquito. Following population replacement of Ae. aegypti by Wolbachia in the target area, however, we find that the Vssc mutations have persisted at pre-release levels. Mosquitoes in two genotype classes demonstrate a type I pyrethroid resistance advantage over wildtype mosquitoes when exposed to 0.25% permethrin. This resistance advantage is even more pronounced with a type II pyrethroid, deltamethrin (0.03%). The results point to the importance of these mutations in pyrethroid resistance in mosquito populations and the need for regular backcrossing with male mosquitoes from the field to maintain similarity of genetic background and population integrity during Wolbachia releases
Establishment of Wolbachia strain wAlbB in Malaysian populations of Aedes aegypti for dengue control
Dengue has enormous health impacts globally. A novel approach to decrease dengue incidence involves the introduction of Wolbachia endosymbionts that block dengue virus transmission into populations of the primary vector mosquito, Aedes aegypti. The wMel Wolbachia strain has previously been trialed in open releases of Ae. aegypti; however, the wAlbB strain has been shown to maintain higher density than wMel at high larval rearing temperatures. Releases of Ae. aegypti mosquitoes carrying wAlbB were carried out in 6 diverse sites in greater Kuala Lumpur, Malaysia, with high endemic dengue transmission. The strain was successfully established and maintained at very high population frequency at some sites or persisted with additional releases following fluctuations at other sites. Based on passive case monitoring, reduced human dengue incidence was observed in the release sites when compared to control sites. The wAlbB strain of Wolbachia provides a promising option as a tool for dengue control, particularly in very hot climates
Wolbachia screen of female Aedes aegypti wMelPop-CLA strain in antibiotic trial
Wolbachia-screening data from female Aedes aegypti infected with wMelPop-CLA (McMeniman et al. 2009) strain. High Resolution Melt Assay on Roche LightCycler480
Wolbachia screen of Aedes aegypti wAlbB females in antibiotic trial
Wolbachia-screening data from female Aedes aegypti infected with wAlbB (Xi et al. 2005) strain in antibiotic trial. High Resolution Melt Assay on Roche LightCycler480
Antibiotic trial development data for Aedes aegypti
Count data from Aedes aegypti antibiotic trial - cumulative pupae counts, number of emerged adults from each treatment
Data from: Environmental concentrations of antibiotics may diminish Wolbachia infections in Aedes aegypti (Diptera: Culicidae)
Wolbachia-infected Aedes aegypti (L.) mosquitoes for control of dengue transmission are being released experimentally in tropical regions of Australia, south-east Asia, and South America. To become established, the Wolbachia Hertig (Rickettsiales: Rickettsiaceae) strains used must induce expression of cytoplasmic incompatibility (CI) in matings between infected males and uninfected females so that infected females have a reproductive advantage, which will drive the infection through field populations. Wolbachia is a Rickettsia-like alphaproteobacterium which can be affected by tetracycline antibiotics. We investigated whether exposure of Wolbachia-infected mosquitoes to chlortetracycline at environmentally relevant levels during their aquatic development resulted in loss or reduction of infection in three strains, wAlbB, wMel, and wMelPop. Wolbachia density was reduced for all three strains at the tested chlortetracycline concentrations of 5 and 50 µg/liter. Two of the strains, wMel and wMelPop, showed a breakdown in CI. The wAlbB strain maintained CI and may be useful at breeding sites where tetracycline contamination has occurred. This may include drier regions where Ae. aegypti can utilize subterranean water sources and septic tanks as breeding sites
Antibiotic trial male Aedes aegypti data - ddPCR for Wolbachia
Male Aedes aegypti from four lines in antibiotic trial. Wolbachia-screening data obtained via QX100™ Droplet Digital™ PCR (ddPCR™) system (Bio-Rad Laboratories Pty., Ltd. Hercules, CA USA) with a hydrolysis probe assay (PrimePCR™, Bio-Rad Laboratories, Inc. Cat. No. 10031261)