1,010 research outputs found
A Generalized Framework on Beamformer Design and CSI Acquisition for Single-Carrier Massive MIMO Systems in Millimeter Wave Channels
In this paper, we establish a general framework on the reduced dimensional
channel state information (CSI) estimation and pre-beamformer design for
frequency-selective massive multiple-input multiple-output MIMO systems
employing single-carrier (SC) modulation in time division duplex (TDD) mode by
exploiting the joint angle-delay domain channel sparsity in millimeter (mm)
wave frequencies. First, based on a generic subspace projection taking the
joint angle-delay power profile and user-grouping into account, the reduced
rank minimum mean square error (RR-MMSE) instantaneous CSI estimator is derived
for spatially correlated wideband MIMO channels. Second, the statistical
pre-beamformer design is considered for frequency-selective SC massive MIMO
channels. We examine the dimension reduction problem and subspace (beamspace)
construction on which the RR-MMSE estimation can be realized as accurately as
possible. Finally, a spatio-temporal domain correlator type reduced rank
channel estimator, as an approximation of the RR-MMSE estimate, is obtained by
carrying out least square (LS) estimation in a proper reduced dimensional
beamspace. It is observed that the proposed techniques show remarkable
robustness to the pilot interference (or contamination) with a significant
reduction in pilot overhead
Beamspace Aware Adaptive Channel Estimation for Single-Carrier Time-varying Massive MIMO Channels
In this paper, the problem of sequential beam construction and adaptive
channel estimation based on reduced rank (RR) Kalman filtering for
frequency-selective massive multiple-input multiple-output (MIMO) systems
employing single-carrier (SC) in time division duplex (TDD) mode are
considered. In two-stage beamforming, a new algorithm for statistical
pre-beamformer design is proposed for spatially correlated time-varying
wideband MIMO channels under the assumption that the channel is a stationary
Gauss-Markov random process. The proposed algorithm yields a nearly optimal
pre-beamformer whose beam pattern is designed sequentially with low complexity
by taking the user-grouping into account, and exploiting the properties of
Kalman filtering and associated prediction error covariance matrices. The
resulting design, based on the second order statistical properties of the
channel, generates beamspace on which the RR Kalman estimator can be realized
as accurately as possible. It is observed that the adaptive channel estimation
technique together with the proposed sequential beamspace construction shows
remarkable robustness to the pilot interference. This comes with significant
reduction in both pilot overhead and dimension of the pre-beamformer lowering
both hardware complexity and power consumption.Comment: 7 pages, 3 figures, accepted by IEEE ICC 2017 Wireless Communications
Symposiu
Visual Feature Attribution using Wasserstein GANs
Attributing the pixels of an input image to a certain category is an
important and well-studied problem in computer vision, with applications
ranging from weakly supervised localisation to understanding hidden effects in
the data. In recent years, approaches based on interpreting a previously
trained neural network classifier have become the de facto state-of-the-art and
are commonly used on medical as well as natural image datasets. In this paper,
we discuss a limitation of these approaches which may lead to only a subset of
the category specific features being detected. To address this problem we
develop a novel feature attribution technique based on Wasserstein Generative
Adversarial Networks (WGAN), which does not suffer from this limitation. We
show that our proposed method performs substantially better than the
state-of-the-art for visual attribution on a synthetic dataset and on real 3D
neuroimaging data from patients with mild cognitive impairment (MCI) and
Alzheimer's disease (AD). For AD patients the method produces compellingly
realistic disease effect maps which are very close to the observed effects.Comment: Accepted to CVPR 201
Quantum Spin Lenses in Atomic Arrays
We propose and discuss `quantum spin lenses', where quantum states of
delocalized spin excitations in an atomic medium are `focused' in space in a
coherent quantum process down to (essentially) single atoms. These can be
employed to create controlled interactions in a quantum light-matter interface,
where photonic qubits stored in an atomic ensemble are mapped to a quantum
register represented by single atoms. We propose Hamiltonians for quantum spin
lenses as inhomogeneous spin models on lattices, which can be realized with
Rydberg atoms in 1D, 2D and 3D, and with strings of trapped ions. We discuss
both linear and non-linear quantum spin lenses: in a non-linear lens, repulsive
spin-spin interactions lead to focusing dynamics conditional to the number of
spin excitations. This allows the mapping of quantum superpositions of
delocalized spin excitations to superpositions of spatial spin patterns, which
can be addressed by light fields and manipulated. Finally, we propose
multifocal quantum spin lenses as a way to generate and distribute entanglement
between distant atoms in an atomic lattice array.Comment: 13 pages, 9 figure
Generating Employment For Turkey: Policy Alternatives In Comparison With Selected Countries
The main purpose of this paper is to provide some lessons for Turkey from the experiences of some selected countries that gained success in their fight against unemployment. In this respect, the experiences of selected countries; Ireland, Netherlands, United Kingdom and South Korea will be analyzed and the policy options for Turkey will be formed up. It is expected that the detailed analysis and comparison of the reforms in labor markets of these countries will put forward essential and applicable results. It is also supposed that our results will greatly contribute to the decrease in the unemployment level in Turkey, when applied. By doing so, this paper endeavors to get some meaningful policy findings for Turkey. In addition, it is believed that the comparison of the labor markets of these countries, the economic structures and labor markets of which are fairly different from each other will result in interesting findings
Precision of maxillo-mandibular registration with intraoral scanners in vitro
Purpose: To compare the precision of maxillo-mandibular registration and resulting full arch occlusion produced by three intraoral scanners in vitro.
Methods: Six dental models (groups A–F) were scanned five times with intraoral scanners (CEREC, TRIOS, PLANMECA), producing both full arch and two buccal maxillo-mandibular scans. Total surface area of contact points (defined as regions within 0.1 mm and all mesh penetrations) was measured, and the distances between four pairs of key points were compared, each two in the posterior and anterior.
Results: Total surface area of contact points varied significantly among scanners across all groups. CEREC produced the smallest contact surface areas (5.7–25.3 mm2), while PLANMECA tended to produce the largest areas in each group (22.2–60.2 mm2). Precision of scanners, as measured by the 95% CI range, varied from 0.1–0.9 mm for posterior key points. For anterior key points the 95% CI range was smaller, particularly when multiple posterior teeth were still present (0.04–0.42 mm). With progressive loss of posterior units (groups D–F), differences in the anterior occlusion among scanners became significant in five out of six groups (D–F left canines and D, F right canines, p < 0.05).
Conclusions: Maxillo-mandibular registrations from three intraoral scanners created significantly different surface areas of occlusal contact. Posterior occlusions revealed lower precision for all scanners than anterior. CEREC tended towards incorrect posterior open bites, whilst TRIOS was most consistent in reproducing occluding units
The structure of vortical flow over a rounded broad-crested weir
Turbulent flow over a rounded broad-crested weir is investigated by means of
detached eddy simulation (DES) and large eddy simulation (LES) with special
emphasis on the interaction of coherent vortex structures with free-surface. In
order to set up and validate the computational model, experimental studies were
conducted in a laboratory flume using a moderately rounded broad-crested weir
with a rounding ratio of R/P=0.15, where R is the radius of the upstream nose
and P is the height of the weir. The simulated mean velocity, Reynolds stresses
and free-surface profiles show good agreement with the experimental
measurements. Spatial variation of the boundary layer on the crest is well
captured using a dimensionless form of the Lamb vector divergence. Boundary
layer shape factor calculated over the weir was found to be lie between 0.76
and 0.92. A horseshoe vortex system emanating from the bottom of the channel
interacts with the free-surface at the entrance of the crest causing undulation
on the free-surface. Unsteady characteristics of the flow are examined in terms
of the power spectral density (PSD) of vortex-induced forces acting on the
weir. It is found that a free-surface boundary layer develops from the
undulation to the wall boundary layer on the crest. It was revealed from the
simulations for various Reynolds numbers that the installation of an artificial
pool upstream of the weir significantly modified vortex structures and reduced
undulation effects by 86% according to a proposed undulation index.Comment: 30 pages, 20 figures and 4 table
- …