7 research outputs found

    The antifungal activity and cytotoxicity of silver containing denture base material

    Get PDF
    Objective: Denture base materials are susceptible to fungal adhesion, which is an important etiological issue in the pathogenesis of denture stomatitis. The purpose of this in vitro study was to evaluate the antifungal activity and cytotoxicity of denture base material containing silver microparticles.Materials and Methods: The polymethyl methacrylate (PMMA) denture base material was used, and silver microparticles were added to the polymer powder in different concentrations by volume (0%, 0.25%, 0.5%, and 1%). Their antifungal activity against Candida albicans was assessed in terms of colony-forming units. PMMA disc specimens containing silver microparticles were eluted with culture medium for 1, 2, and 5 days. The cytotoxicity of the eluates to cultured L929 mouse fibroblast cells was evaluated using a real-time cell analysis (RTCA) system and the 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay.Results: The antifungal effect against C. albicans increased with the percentage of silver microparticles (P < 0.05). For both tests, both RTCA and the MTT assay, no time- or silver-dependent cytotoxicity of PMMA denture base material containing silver microparticles was observed.Conclusions: PMMA denture base material containing silver microparticles have antifungal activity and no cytotoxic effect.Keywords: Candida albicans, cytotoxicity, denture base, silver microparticle

    Draft genome sequence of Halomonas smyrnensis AAD6<sup>T</sup>

    No full text
    Halomonas smyrnensis AAD6(T) is a Gram-negative, aerobic, exopolysaccharide-producing, and moderately halophilic bacterium that produces levan, a fructose homopolymer with many potential uses in various industries. We report the draft genome sequence of H. smyrnensis AAD6(T), which will accelerate research on the rational design and optimization of microbial levan production

    Effect of cytochrome P450 2C19 polymorphisms on the Helicobacter pylori eradication rate following two-week triple therapy with pantoprazole or rabeprazole.

    No full text
    OBJECTIVE: Cytochrome P450 2C19 (CYP2C19) polymorphisms play an important role in the metabolism of proton pump inhibitors. Rabeprazole is primarily metabolized via non-enzymatic pathways. In this study, we determined whether rabeprazole- and pantoprazole-based eradication treatments were influenced by CYP2C19 polymorphisms
    corecore