28 research outputs found

    Optimizing a coarse-grained model for the recognition of protein-protein binding

    Get PDF
    We are optimizing a force-field to be used with our coarsegrained protein model for the recognition of protein -protein binding. We have found that, apart from ranking correctly the ligand-receptor conformations generated in a protein-protein docking algorithm, our model is able to distinguish binding (experimental structure) from nonbinding (false positive) conformations for many complexes. This suggests us that the model could have a good performance in complete cross-docking, a method aimed to recognize the possible binding between any two proteins that are unknown to interact.Peer Reviewe

    Optimizing a coarse-grained model for the recognition of protein-protein binding

    Get PDF
    We are optimizing a force-field to be used with our coarsegrained protein model for the recognition of protein -protein binding. We have found that, apart from ranking correctly the ligand-receptor conformations generated in a protein-protein docking algorithm, our model is able to distinguish binding (experimental structure) from nonbinding (false positive) conformations for many complexes. This suggests us that the model could have a good performance in complete cross-docking, a method aimed to recognize the possible binding between any two proteins that are unknown to interact.Peer Reviewe

    Discrete Molecular Dynamics Approach to the Study of Disordered and Aggregating Proteins

    Get PDF
    We present a refinement of the Coarse Grained PACSAB force field for Discrete Molecular Dynamics (DMD) simulations of proteins in aqueous conditions. As the original version, the refined method provides good representation of the structure and dynamics of folded proteins but provides much better representations of a variety of unfolded proteins, including some very large, impossible to analyze by atomistic simulation methods. The PACSAB/DMD method also reproduces accurately aggregation properties, providing good pictures of the structural ensembles of proteins showing a folded core and an intrinsically disordered region. The combination of accuracy and speed makes the method presented here a good alternative for the exploration of unstructured protein systems

    Multipole modes and spin features in the Raman spectrum of nanoscopic quantum rings

    Full text link
    We present a systematic study of ground state and spectroscopic properties of many-electron nanoscopic quantum rings. Addition energies at zero magnetic field (B) and electrochemical potentials as a function of B are given for a ring hosting up to 24 electrons. We find discontinuities in the excitation energies of multipole spin and charge density modes, and a coupling between the charge and spin density responses that allow to identify the formation of ferromagnetic ground states in narrow magnetic field regions. These effects can be observed in Raman experiments, and are related to the fractional Aharonov-Bohm oscillations of the energy and of the persistent current in the rin

    Residues coevolution guides the systematic identification of alternative functional conformations in proteins

    Get PDF
    We present here a new approach for the systematic identification of functionally relevant conformations in proteins. Our fully automated pipeline, based on discrete molecular dynamics enriched with coevolutionary information, is able to capture alternative conformational states in 76% of the proteins studied, providing key atomic details for understanding their function and mechanism of action. We also demonstrate that, given its sampling speed, our method is well suited to explore structural transitions in a high-throughput manner, and can be used to determine functional conformational transitions at the entire proteome level

    Accurate Description of Protein–Protein Recognition and Protein Aggregation with the Implicit-Solvent-Based PACSAB Protein Model

    No full text
    We used the PACSAB protein model, based on the implicit solvation approach, to simulate protein–protein recognition and study the effect of helical structure on the association of aggregating peptides. After optimization, the PACSAB force field was able to reproduce correctly both the correct binding interface in ubiquitin dimerization and the conformational ensemble of the disordered protein activator for hormone and retinoid receptor (ACTR). The PACSAB model allowed us to predict the native binding of ACTR with its binding partner, reproducing the refolding upon binding mechanism of the disordered protein

    Discrete Molecular Dynamics Approach to the Study of Disordered and Aggregating Proteins

    No full text
    We present a refinement of the Coarse Grained PACSAB force field for Discrete Molecular Dynamics (DMD) simulations of proteins in aqueous conditions. As the original version, the refined method provides good representation of the structure and dynamics of folded proteins but provides much better representations of a variety of unfolded proteins, including some very large, impossible to analyze by atomistic simulation methods. The PACSAB/DMD method also reproduces accurately aggregation properties, providing good pictures of the structural ensembles of proteins showing a folded core and an intrinsically disordered region. The combination of accuracy and speed makes the method presented here a good alternative for the exploration of unstructured protein systems

    Vertically coupled quantum dots in the local spin-density functional theory

    Get PDF
    We have investigated the structure of double quantum dots vertically coupled at zero magnetic field within local-spin-density functional theory. The dots are identical and have a finite width, and the whole system is axially symmetric. We first discuss the effect of thickness on the addition spectrum of one single dot. Next we describe the structure of coupled dots as a function of the interdot distance for different electron numbers. Addition spectra, Hund's rule, and molecular-type configurations are discussed. It is shown that self-interaction corrections to the density-functional results do not play a very important role in the calculated addition spectr
    corecore