80 research outputs found

    +1 Frameshifting as a Novel Mechanism to Generate a Cryptic Cytotoxic T Lymphocyte Epitope Derived from Human Interleukin 10

    Get PDF
    Recent data indicate that some cytotoxic T cells (CTLs) recognize so-called cryptic epitopes, encoded by nonprimary open reading frame (ORF) sequences or other nonclassical expression pathways. We describe here a novel mechanism leading to generation of a cryptic CTL epitope. We isolated from the synovial fluid of a patient suffering from a Reiter's syndrome an autoreactive T cell clone that recognized cellular IL-10 in the HLA-B*2705 context. The minimal IL-10 sequence corresponding to nucleotides 379–408 was shown to activate this clone, upon cotransfection into COS cells with the DNA encoding HLA-B*2705, but the synthetic peptide deduced from this sequence did not stimulate the clone. Using a site-directed mutagenesis approach, we found that this clone recognized a transframe epitope generated by an internal +1 frameshifting in the IL-10 sequence and so derived partly from ORF1, partly from ORF2. We defined that +1 frameshifting was induced by a specific heptamer sequence. These observations illustrate the variety of mechanisms leading to generation of cryptic epitopes and suggest that frameshifting in normal cellular genes may be more common than expected

    A novel HLA-B18 restricted CD8+ T cell epitope is efficiently cross-presented by dendritic cells from soluble tumor antigen

    Get PDF
    NY-ESO-1 has been a major target of many immunotherapy trials because it is expressed by various cancers and is highly immunogenic. In this study, we have identified a novel HLA-B*1801-restricted CD8<sup>+</sup>T cell epitope, NY-ESO-1<sub>88–96</sub> (LEFYLAMPF) and compared its direct- and cross-presentation to that of the reported NY-ESO-1<sub>157–165</sub> epitope restricted to HLA-A*0201. Although both epitopes were readily cross-presented by DCs exposed to various forms of full-length NY-ESO-1 antigen, remarkably NY-ESO-1<sub>88–96</sub> is much more efficiently cross-presented from the soluble form, than NY-ESO-1<sub>157–165</sub>. On the other hand, NY-ESO-1<sub>157–165</sub> is efficiently presented by NY-ESO-1-expressing tumor cells and its presentation was not enhanced by IFN-γ treatment, which induced immunoproteasome as demonstrated by Western blots and functionally a decreased presentation of Melan A<sub>26–35</sub>; whereas NY-ESO-1<sub>88–96</sub> was very inefficiently presented by the same tumor cell lines, except for one that expressed high level of immunoproteasome. It was only presented when the tumor cells were first IFN-γ treated, followed by infection with recombinant vaccinia virus encoding NY-ESO-1, which dramatically increased NY-ESO-1 expression. These data indicate that the presentation of NY-ESO-1<sub>88–96</sub> is immunoproteasome dependent. Furthermore, a survey was conducted on multiple samples collected from HLA-B18+ melanoma patients. Surprisingly, all the detectable responses to NY-ESO-1<sub>88–96</sub> from patients, including those who received NY-ESO-1 ISCOMATRIX™ vaccine were induced spontaneously. Taken together, these results imply that some epitopes can be inefficiently presented by tumor cells although the corresponding CD8<sup>+</sup>T cell responses are efficiently primed in vivo by DCs cross-presenting these epitopes. The potential implications for cancer vaccine strategies are further discussed

    Stage-Specific Inhibition of MHC Class I Presentation by the Epstein-Barr Virus BNLF2a Protein during Virus Lytic Cycle

    Get PDF
    gamma-herpesvirus Epstein-Barr virus (EBV) persists for life in infected individuals despite the presence of a strong immune response. During the lytic cycle of EBV many viral proteins are expressed, potentially allowing virally infected cells to be recognized and eliminated by CD8+ T cells. We have recently identified an immune evasion protein encoded by EBV, BNLF2a, which is expressed in early phase lytic replication and inhibits peptide- and ATP-binding functions of the transporter associated with antigen processing. Ectopic expression of BNLF2a causes decreased surface MHC class I expression and inhibits the presentation of indicator antigens to CD8+ T cells. Here we sought to examine the influence of BNLF2a when expressed naturally during EBV lytic replication. We generated a BNLF2a-deleted recombinant EBV (ΔBNLF2a) and compared the ability of ΔBNLF2a and wild-type EBV-transformed B cell lines to be recognized by CD8+ T cell clones specific for EBV-encoded immediate early, early and late lytic antigens. Epitopes derived from immediate early and early expressed proteins were better recognized when presented by ΔBNLF2a transformed cells compared to wild-type virus transformants. However, recognition of late antigens by CD8+ T cells remained equally poor when presented by both wild-type and ΔBNLF2a cell targets. Analysis of BNLF2a and target protein expression kinetics showed that although BNLF2a is expressed during early phase replication, it is expressed at a time when there is an upregulation of immediate early proteins and initiation of early protein synthesis. Interestingly, BNLF2a protein expression was found to be lost by late lytic cycle yet ΔBNLF2a-transformed cells in late stage replication downregulated surface MHC class I to a similar extent as wild-type EBV-transformed cells. These data show that BNLF2a-mediated expression is stage-specific, affecting presentation of immediate early and early proteins, and that other evasion mechanisms operate later in the lytic cycle

    Towards Deciphering the Hidden Mechanisms That Contribute to the Antigenic Activation Process of Human Vγ9Vδ2 T Cells

    No full text
    Vγ9Vδ2 T cells represent a major unconventional γδ T cell subset located in the peripheral blood of adults in humans and several non-human primates. Lymphocytes that constitute this transitional subset can sense subtle level changes of intracellular phosphorylated intermediates of the isoprenoid biosynthesis pathway (phosphoantigens, pAg), such as isopentenyl pyrophosphate, during cell stress events. This unique antigenic activation process operates in a rigorous framework that requires the expression of butyrophilin 3A1 (BTN3A1/CD277) molecules, which are type I glycoproteins that belong to the B7 family. Several studies have further shown that pAg specifically bind to the intracellular B30.2 domain of BTN3A1 linked to the antigenic activation of Vγ9Vδ2 T cells. Here, we highlight the recent advances in BTN3A1 dynamics induced upon the binding of pAg and the contribution of the different subunits to this activation process. Recent reports support that conformational modifications of BTN3A1 might represent a key step in the detection of infection or tumorigenesis by Vγ9Vδ2 T cells. A better understanding of this mechanism will help optimize novel immunotherapeutical approaches that target defined functions of this unique γδ T cell subset

    Towards Deciphering the Hidden Mechanisms That Contribute to the Antigenic Activation Process of Human Vγ9Vδ2 T Cells

    No full text
    International audienceVγ9Vδ2 T cells represent a major unconventional γδ T cell subset located in the peripheral blood of adults in humans and several non-human primates. Lymphocytes that constitute this transitional subset can sense subtle level changes of intracellular phosphorylated intermediates of the isoprenoid biosynthesis pathway (phosphoantigens, pAg), such as isopentenyl pyrophosphate, during cell stress events. This unique antigenic activation process operates in a rigorous framework that requires the expression of butyrophilin 3A1 (BTN3A1/CD277) molecules, which are type I glycoproteins that belong to the B7 family. Several studies have further shown that pAg specifically bind to the intracellular B30.2 domain of BTN3A1 linked to the antigenic activation of Vγ9Vδ2 T cells. Here, we highlight the recent advances in BTN3A1 dynamics induced upon the binding of pAg and the contribution of the different subunits to this activation process. Recent reports support that conformational modifications of BTN3A1 might represent a key step in the detection of infection or tumorigenesis by Vγ9Vδ2 T cells. A better understanding of this mechanism will help optimize novel immunotherapeutical approaches that target defined functions of this unique γδ T cell subset

    Emerging Challenges of Preclinical Models of Anti-tumor Immunotherapeutic Strategies Utilizing Vγ9Vδ2 T Cells

    No full text
    International audienceDespite recent advances, the eradication of cancers still represents a challenge which justifies the exploration of additional therapeutic strategies such as immunotherapies, including adoptive cell transfers. Human peripheral Vγ9Vδ2 T cells, which constitute a major transitional immunity lymphocyte subset, represent attractive candidates because of their broad and efficient anti-tumor functions, as well as their lack of alloreactivity and easy handling. Vγ9Vδ2 T cells act like immune cell stress sensors that can, in a tightly controlled manner but through yet incompletely understood mechanisms, detect subtle changes of levels of phosphorylated metabolites of isoprenoid synthesis pathways. Consequently, various anti-tumor immunotherapeutic strategies have been proposed to enhance their reactivity and cytotoxicity, as well as to reduce the deleterious events. In this review, we expose these advances based on different strategies and their validation in preclinical models. Importantly, we next discuss advantages and limits of each approach, by highlighting the importance of the use of relevant preclinical model for evaluation of safety and efficacy. Finally, we propose novel perspectives and strategies that should be explored using these models for therapeutic improvements

    Beyond CAR T cells: Engineered Vγ9Vδ2 T cells to fight solid tumors

    No full text
    International audienceDespite recent significant progress in cancer immunotherapies based on adoptive cell transfer(s)(ACT), the eradication of cancers still represents a major clinical challenge. In particular, the efficacy of current ACT-based therapies against solid tumors is dramatically reduced by physical barriers that prevent tumor infiltration of adoptively transferred effectors, and the tumor environment that suppress their anti-tumor functions. Novel immunotherapeutic strategies are thus needed to circumvent these issues. Human peripheral blood Vγ9Vδ2 T cells, a non-alloreactive innate-like T lymphocyte subset, recently proved to be a promising anti-tumor effector subset for ACT-based immunotherapies. Furthermore, new cell engineering tools that leverage the potential of CRISPR/Cas technology open astounding opportunities to optimize their anti-tumor effector functions. In this review, we present the current ACT strategies based on engineered T cells and their limitations. We then discuss the potential of engineered Vγ9Vδ2 T cell to overcome these limitations and improve ACT-based cancer immunotherapies

    An X-ray Vision for Phosphoantigen Recognition

    No full text
    International audienceno abstrac
    corecore