18 research outputs found

    Extraction of green absolute from thyme using ultrasound and sunflower oil

    Get PDF
    Absolute is the plant aroma isolate mostly used in the food and fragrance sectors. The use of organic solvents constitutes the most commonly used method for obtaining this aroma. However, this technique may leave trace amounts of solvents which are considered undesirable for these industries. In this work, a new green extraction approach was implemented using ultrasound (US) with sunflower oil (SO) as a natural solvent to produce green absolute from thyme (Thymus vulgaris). US optimal conditions for absolute yield were investigated using response surface methodology (RSM) and compared to conventional SO (SO-CV) and hexane (Hex-CV) extractions. The absolutes were analyzed by GC-MS for their chemical composition and tested for their antioxidant activities (total phenols, DPPH and frying test). Optimized conditions obtained by RSM for absolute yield were T = 50 °C, t = 22 min, P = 98 W. The US using SO as solvent offers important advantages: shorter extraction time, increase of 47% in absolute yield compared to SO-CV extraction. Although the absolute obtained by hexane extraction provided improved yield (8.64 g/100 g DW), it contained around 75% of waxy materials. GC-MS analysis showed no remarkable variation of the chemical composition of the absolutes compared to those obtained by hexane extraction. Moreover, the US extraction allowed the highest recovery of monoterpene phenols thymol and carvacrol (86.2%). The absolute obtained by SO-US was free from waxes and organic solvent residues and exerted the highest antioxidant activity. Results show that ultrasound extraction using SO is a good alternative. It suggests the possibility of the production of green absolutes on pilot and industrial scale

    Rapid and Green Analytical Method for the Determination of Quinoline Alkaloids from Cinchona succirubra Based on Microwave-Integrated Extraction and Leaching (MIEL) Prior to High Performance Liquid Chromatography

    Get PDF
    Quinas contains several compounds, such as quinoline alkaloids, principally quinine, quinidine, cinchonine and cichonidine. Identified from barks of Cinchona, quinine is still commonly used to treat human malaria. Microwave-Integrated Extraction and Leaching (MIEL) is proposed for the extraction of quinoline alkaloids from bark of Cinchona succirubra. The process is performed in four steps, which ensures complete, rapid and accurate extraction of the samples. Optimal conditions for extraction were obtained using a response surface methodology reached from a central composite design. The MIEL extraction has been compared with a conventional technique soxhlet extraction. The extracts of quinoline alkaloids from C. succirubra obtained by these two different methods were compared by HPLC. The extracts obtained by MIEL in 32 min were quantitatively (yield) and qualitatively (quinine, quinidine, cinchonine, cinchonidine) similar to those obtained by conventional Soxhlet extraction in 3 hours. MIEL is a green technology that serves as a good alternative for the extraction of Cinchona alkaloids

    Portable microwave assisted extraction: An original concept for green analytical chemistry

    No full text
    International audienceThis paper describes a portable microwave assisted extraction apparatus (PMAE) for extraction of bioac-tive compounds especially essential oils and aromas directly in a crop or in a forest. The developed procedure, based on the concept of green analytical chemistry, is appropriate to obtain direct in-field information about the level of essential oils in natural samples and to illustrate green chemical lesson and research. The efficiency of this experiment was validated for the extraction of essential oil of rosemary directly in a crop and allows obtaining a quantitative information on the content of essential oil, which was similar to that obtained by conventional methods in the laboratory

    Isolation of volatils from maritime pine sawdust waste by different processes: Ultrasound, microwave, turbohydrodistillation, and hydrodistillation

    No full text
    This study concerns the transformation of maritime pine (Pinus pinaster) sawdust waste into potentially novel products through isolation of volatile compounds in the form of valuable oil. Different techniques, namely, turbohydrodistillation (THD), solvent-free microwave extraction (SFME), microwave hydrodiffusion and gravity (MHG), and ultrasound-assisted extraction (UAE) were tested. These different processes were compared to conventional hydrodistillation (HD) and allowed to extract almost similar yields of isolated oils. THD which consists in a permanent agitation during extraction and UAE improve the kinetics of extraction, but MHG and SFME required the shortest extraction times, 60 min to reach a maximal yield of 0.272 and 0.266% (w/w), respectively. The compositions of isolated oils are almost similar with a high proportion of oxygenated compounds for MHG and SFME, respectively, 56.9% and 54.5% compared with 37.7%, 44.1% and 34.1%, respectively, for THD, UAE, and for the conventional HD method

    Downscaling of Industrial Turbo-Distillation to Laboratory Turbo-Clevenger for Extraction of Essential Oils. Application of Concepts of Green Analytical Chemistry

    No full text
    In the effort of innovation towards green analytical chemistry concepts and considering the six principles of green extraction, the industrial turbodistillation process was downscaled into a laboratory apparatus turbo-Clevenger (TC) for the extraction of essential oils. Turbodistillation is used as an industrial purpose for the extraction of essential oils from hard matrixes such as wood, barks, seeds. In this work, a TC and the conventional technique of hydrodistillation (HD, Clevenger apparatus) are used for the extraction of essential oils from three spices with hard structures(Illicium verum, Schinus terebinthifolius, and Cinnamomum cassia) and are compared. This study shows that the essential oils extracted by TC in 30 min were quantitatively (yield and kinetics profile) and qualitatively (aromatic profile) similar to those obtained using conventional hydrodistillation in 3 h. This process, which gave a reduced extraction time, was perfectly adapted to the extraction of hard matrixes

    First Investigation on Ultrasound-Assisted Preparation of Food Products: Sensory and Physicochemical Characteristics

    No full text
    This paper presents a comparison between manufactured food products using conventional and ultrasound-assisted procedures. Three different foam-type products, chocolate Genoise, basic sponge cake, and chocolate mousse were prepared using both methods with subsequent evaluation of the samples using both sensory and physicochemical methods. Ultrasound-assisted preparations were considered superior according to the sensory analysis, and physicochemical data confirmed this finding. This approach of applying an emerging piece of equipment, with potential industrial application to assist food preparation, consists of a new technique that could be of great interest for the development of not only other food products created by molecular gastronomy but also for practical work carried out by students

    FPGA Based Implementation of an Invisible-Robust Image Watermarking Encoder

    No full text
    Both encryption and digital watermarking techniques need to be incorporated in a digital rights management framework to address different aspects of content management. While encryption transforms original multimedia object into another form, digital watermarking leaves the original object intact and recognizable. The objective is to develop low power, real time, reliable and secure watermarking systems, which can be achieved through hardware implementations
    corecore