47 research outputs found

    Rise of the Colorado Plateau: A Synthesis of Paleoelevation Constraints From the Region and a Path Forward Using Temperature-Based Elevation Proxies

    Get PDF
    The Colorado Plateau’s complex landscape has motivated over a century of debate, key to which is understanding the timing and processes of surface uplift of the greater Colorado Plateau region, and its interactions with erosion, drainage reorganization, and landscape evolution. Here, we evaluate what is known about the surface uplift history from prior paleoelevation estimates from the region by synthesizing and evaluating estimates 1) in context inferred from geologic, geomorphic, and thermochronologic constraints, and 2) in light of recent isotopic and paleobotanical proxy method advancements. Altogether, existing data and estimates suggest that half-modern surface elevations were attained by the end of the Laramide orogeny (∼40 Ma), and near-modern surface elevations by the mid-Miocene (∼16 Ma). However, our analysis of paleoelevation proxy methods highlights the need to improve proxy estimates from carbonate and floral archives including the ∼6–16 Ma Bidahochi and ∼34 Ma Florissant Formations and explore understudied (with respect to paleoelevation) Laramide basin deposits to fill knowledge gaps. We argue that there are opportunities to leverage recent advancements in temperature-based paleoaltimetry to refine the surface uplift history; for instance, via systematic comparison of clumped isotope and paleobotanical thermometry methods applied to lacustrine carbonates that span the region in both space and time, and by use of paleoclimate model mediated lapse rates in paleoelevation reconstruction

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Observation of gravitational waves from the coalescence of a 2.5–4.5 M ⊙ compact object and a neutron star

    Get PDF
    We report the observation of a coalescing compact binary with component masses 2.5–4.5 M ⊙ and 1.2–2.0 M ⊙ (all measurements quoted at the 90% credible level). The gravitational-wave signal GW230529_181500 was observed during the fourth observing run of the LIGO–Virgo–KAGRA detector network on 2023 May 29 by the LIGO Livingston observatory. The primary component of the source has a mass less than 5 M ⊙ at 99% credibility. We cannot definitively determine from gravitational-wave data alone whether either component of the source is a neutron star or a black hole. However, given existing estimates of the maximum neutron star mass, we find the most probable interpretation of the source to be the coalescence of a neutron star with a black hole that has a mass between the most massive neutron stars and the least massive black holes observed in the Galaxy. We provisionally estimate a merger rate density of 55−47+127Gpc−3yr−1 for compact binary coalescences with properties similar to the source of GW230529_181500; assuming that the source is a neutron star–black hole merger, GW230529_181500-like sources may make up the majority of neutron star–black hole coalescences. The discovery of this system implies an increase in the expected rate of neutron star–black hole mergers with electromagnetic counterparts and provides further evidence for compact objects existing within the purported lower mass gap

    Ultralight vector dark matter search using data from the KAGRA O3GK run

    Get PDF
    Among the various candidates for dark matter (DM), ultralight vector DM can be probed by laser interferometric gravitational wave detectors through the measurement of oscillating length changes in the arm cavities. In this context, KAGRA has a unique feature due to differing compositions of its mirrors, enhancing the signal of vector DM in the length change in the auxiliary channels. Here we present the result of a search for U(1)B−L gauge boson DM using the KAGRA data from auxiliary length channels during the first joint observation run together with GEO600. By applying our search pipeline, which takes into account the stochastic nature of ultralight DM, upper bounds on the coupling strength between the U(1)B−L gauge boson and ordinary matter are obtained for a range of DM masses. While our constraints are less stringent than those derived from previous experiments, this study demonstrates the applicability of our method to the lower-mass vector DM search, which is made difficult in this measurement by the short observation time compared to the auto-correlation time scale of DM

    Observation of gravitational waves from the coalescence of a 2.5−4.5 M⊙ compact object and a neutron star

    Get PDF

    A symmetrical CO2 peak and asymmetrical climate change during the middle Miocene

    No full text
    Understanding the future trajectory of Earth's climate requires knowledge of shifts in atmospheric CO2 concentrations during past warm episodes. The Miocene Climatic Optimum (MCO, similar to 17-14 Ma) was likely the warmest episode of the past 25 Myr, and thus atmospheric CO2 concentrations during this interval are of particular interest. However, CO2 records across the middle Miocene are rather scattered and data are notably sparse for the latter part of the MCO. Here we present a paleosol-based CO2 record from the Tianshui Basin, northern China, spanning 17-7 Ma. Our results show elevated mean CO2 during the second half of the MCO corresponding with some of the lowest benthic delta O-18 values and highest benthic delta C-13 values, as part of the "Monterey excursion", published for the Neogene. This result supports the idea that the broader Monterey excursion was primarily associated with a CO2 maximum, not carbon burial and CO2 minima as previously interpreted. The new CO2 record, along with previous CO2 records based on paleosols, stomata and foraminiferal boron isotope compositions, also suggests that mean CO2 across the MCO was elevated compared with the immediately following (post-MCO, 14-11 Ma, >80% probability) and immediately preceding (pre-MCO, 20-17 Ma, 70% probability) time periods. The most probable magnitude of the MCO CO2 peak is 20% higher than post-MCO and 12.5% higher than pre-MCO levels. Larger factors, of perhaps 50% higher CO2, likely apply in narrower (<1 Myr) time slices. CO2 records from each proxy individually support the conclusion of modestly elevated MCO CO2, although large temporal gaps exist in records from any one proxy. Using all proxies together, we estimate average MCO CO2 of 375+150/-100 (84th and 16th percentile) ppm. Although mean MCO CO2 was elevated, the MCO was also characterized by highly variable CO2. In addition, determinations from all three proxies suggest that at times during the MCO, CO2 levels were as low as they were following the ice sheet expansion of the Miocene Climate Transition. Furthermore, pre-MCO CO2 levels are indistinguishable from post-MCO CO2 levels (60% probability of pre-MCO CO2 > post-MCO CO2), despite significantly lower benthic delta O-18 values during the former. We conclude that 1) the MCO was a period of slightly elevated and highly variable CO2 compared with the immediately preceding and following intervals, and 2) neither CO2 decrease, orbitally-controlled seasonality over Antarctica nor the confluence of these factors was sufficient to cause Miocene Climate Transition ice sheet expansion. Rather strengthening of the Antarctic Circumpolar Current and Southern Ocean cooling related to closure of the eastern Tethys was a necessary first step. (C) 2018 Elsevier B.V. All rights reserved

    Ultralight vector dark matter search using data from the KAGRA O3GK run

    Get PDF
    Among the various candidates for dark matter (DM), ultralight vector DM can be probed by laser interferometric gravitational wave detectors through the measurement of oscillating length changes in the arm cavities. In this context, KAGRA has a unique feature due to differing compositions of its mirrors, enhancing the signal of vector DM in the length change in the auxiliary channels. Here we present the result of a search for ⁢(1)− gauge boson DM using the KAGRA data from auxiliary length channels during the first joint observation run together with GEO600. By applying our search pipeline, which takes into account the stochastic nature of ultralight DM, upper bounds on the coupling strength between the ⁢(1)− gauge boson and ordinary matter are obtained for a range of DM masses. While our constraints are less stringent than those derived from previous experiments, this study demonstrates the applicability of our method to the lower-mass vector DM search, which is made difficult in this measurement by the short observation time compared to the auto-correlation timescale of DM

    Observation of Gravitational Waves from the Coalescence of a 2.5–4.5Me Compact Object and a Neutron Star

    No full text
    We report the observation of a coalescing compact binary with component masses 2.5–4.5 Me and 1.2–2.0 Me (all measurements quoted at the 90% credible level). The gravitational-wave signal GW230529_181500 was observed during the fourth observing run of the LIGO–Virgo–KAGRA detector network on 2023 May 29 by the LIGO Livingston observatory. The primary component of the source has a mass less than 5 Me at 99% credibility. We cannot definitively determine from gravitational-wave data alone whether either component of the source is a neutron star or a black hole. However, given existing estimates of the maximum neutron star mass, we find the most probable interpretation of the source to be the coalescence of a neutron star with a black hole that has a mass between the most massive neutron stars and the least massive black holes observed in the Galaxy. We provisionally estimate a merger rate density of 55-+47127 Gpc-3 yr-1 for compact binary coalescences with properties similar to the source of GW230529_181500; assuming that the source is a neutron star–black hole merger, GW230529_181500-like sources may make up the majority of neutron star–black hole coalescences. The discovery of this system implies an increase in the expected rate of neutron star–black hole mergers with electromagnetic counterparts and provides further evidence for compact objects existing within the purported lower mass gap
    corecore