4 research outputs found

    A research agenda for seed-trait functional ecology

    Get PDF
    Trait-based approaches have improved our understanding of plant evolution, community assembly and ecosystem functioning. A major challenge for the upcoming decades is to understand the functions and evolution of early life-history traits, across levels of organization and ecological strategies. Although a variety of seed traits are critical for dispersal, persistence, germination timing and seedling establishment, only seed mass has been considered systematically. Here we suggest broadening the range of morphological, physiological and biochemical seed traits to add new understanding on plant niches, population dynamics and community assembly. The diversity of seed traits and functions provides an important challenge that will require international collaboration in three areas of research. First, we present a conceptual framework for a seed ecological spectrum that builds upon current understanding of plant niches. We then lay the foundation for a seed-trait functional network, the establishment of which will underpin and facilitate trait-based inferences. Finally, we anticipate novel insights and challenges associated with incorporating diverse seed traits into predictive evolutionary ecology, community ecology and applied ecology. If the community invests in standardized seed-trait collection and the implementation of rigorous databases, major strides can be made at this exciting frontier of functional ecology

    A framework for the practical science necessary to restore sustainable, resilient, and biodiverse ecosystems

    Get PDF
    Demand for restoration of resilient, self-sustaining, and biodiverse natural ecosystems as a conservation measure is increasing globally; however, restoration efforts frequently fail to meet standards appropriate for this objective. Achieving these standards requires management underpinned by input from diverse scientific disciplines including ecology, biotechnology, engineering, soil science, ecophysiology, and genetics. Despite increasing restoration research activity, a gap between the immediate needs of restoration practitioners and the outputs of restoration science often limits the effectiveness of restoration programs. Regrettably, studies often fail to identify the practical issues most critical for restoration success. We propose that part of this oversight may result from the absence of a considered statement of the necessary practical restoration science questions. Here we develop a comprehensive framework of the research required to bridge this gap and guide effective restoration. We structure questions in five themes: (1) setting targets and planning for success, (2) sourcing biological material, (3) optimizing establishment, (4) facilitating growth and survival, and (5) restoring resilience, sustainability, and landscape integration. This framework will assist restoration practitioners and scientists to identify knowledge gaps and develop strategic research focused on applied outcomes. The breadth of questions highlights the importance of cross-discipline collaboration among restoration scientists, and while the program is broad, successful restoration projects have typically invested in many or most of these themes. Achieving restoration ecology's goal of averting biodiversity losses is a vast challenge: investment in appropriate science is urgently needed for ecological restoration to fulfill its potential and meet demand as a conservation too

    Alleviation of morphophysiological dormancy in seeds of the Australian arid-zone endemic shrub, Hibbertia glaberrima F. Muell. (Dilleniaceae)

    No full text
    © Cambridge University Press 2018. Morphophysiological dormancy (MPD) is predominantly found in seeds of temperate regions and is uncommon in arid biomes. MPD has been reported in a number of Hibbertia (Dilleniaceae) species of temperate Australia, and in a single species of the arid zone, H. glaberrima. This study aimed to examine the dormancy and germination ecology of seeds of H. glaberrima. Seeds were subjected to temperature stratification treatments designed to mimic summer and autumn conditions in the Pilbara region of Western Australia. Seed germination and embryo growth were measured. We also tested the interaction between temperature stratification and cycles of drying and wetting designed to mimic sporadic rainfall events. All temperature and moisture treatments were tested in combination (+/-) with the smoke-derived chemical karrikinolide (KAR1). Exposing dormant seeds to temperatures suitable for warm stratification (35°C) for = 8 weeks, followed by incubation at 25°C, resulted in significantly higher germination compared with non-stratified seeds. Exposing seeds to dry/wet cycling in conjunction with temperature stratification did not significantly increase germination. Exposure to KAR1 increased germination under most conditions. Once seeds are shed during October to December, they are exposed to hot and sporadically wet conditions over summer, allowing MPD to be overcome in a proportion of the seed population. Seeds may germinate in autumn (March to April), in conjunction with cooler temperatures. More deeply dormant individuals may require more than one summer to overcome dormancy. Similar to other species occurring in fire-prone ecosystems, fire also plays a crucial role in the germination ecology of H. glaberrima

    Ecological niche and bet-hedging strategies for Triodia (R.Br.) seed germination

    No full text
    Background and Aims: Regeneration dynamics in many arid zone grass species are regulated by innate seed dormancy mechanisms and environmental cues (temperature, moisture and fire) that result in infrequent germination following rainfall. This study investigated bet-hedging strategies associated with dormancy and germination in arid zone Triodia species from north-west Australia, by assessing (1) the effects of the mechanical restriction imposed by the indehiscent floral bracts (i.e. floret) covering the seed and (2) the impact of dormancy alleviation on florets and cleaned seeds (i.e. florets removed) when germinated under water stress. Methods: The initial dormancy status and germination for six species were tested on intact florets and cleaned seeds, across temperatures (10–40 °C) with and without the fire-related stimulant karrikinolide (KAR1), and under alternating light or constant dark conditions. Physiological dormancy alleviation was assessed by wet/dry cycling florets over a period of 10 weeks, and germination was compared against untreated florets, and cleaned seeds across a water potential gradient between 0 and –1.5 MPa. Key Results: Florets restricted germination (<45 %) at all temperatures and, despite partial alleviation of physiological dormancy (wet/dry cycling for 8 weeks), intact florets germinated only at high water potentials. Cleaned seeds showed the highest germination (40–90 %) across temperatures when treated with KAR1, and germinated at much lower water potentials (–0.4 and –0.9 MPa). Triodia pungens was the most responsive to KAR1, with both seeds and florets responding, while for the remaining five species, KAR1 had a positive effect for seeds only. Conclusions: Only after seed dormancy was alleviated by removing florets and when KAR1was applied did germination under water stress increase. This suggests that seeds of these Triodia species are cued to recruit following fire and during periods of high precipitation. Climate change, driven by large shifts in rainfall patterns, is likely to impact Triodia recruitment further in arid zone grasslands
    corecore