152 research outputs found

    A Case of Linear Porokeratosis Superimposed on Disseminated Superficial Actinic Porokeratosis

    Get PDF
    We present a female patient with linear porokeratosis of her right arm since childhood. At the age of 67 years she additionally developed disseminated superficial actinic porokeratosis (DSAP) involving both lower legs. This uncommon coexistence of two different types of porokeratosis fulfils the clinical criteria of a type 2 segmental manifestation of an autosomal dominant skin disorder, being superimposed on the ordinary nonsegmental lesions and reflecting loss of heterozygosity that occurred at an early developmental stage. In DSAP molecular evidence of this concept is so far lacking, but such proof has already been provided in several other autosomal dominant skin disorders. Molecular analysis of cases of type 2 segmental involvement may help elucidate the genetic defect causing DSAP

    Repair or regenerate—how can we tip the balance?

    Full text link

    Adult Zebrafish as a Model System for Cutaneous Wound-Healing Research

    Get PDF
    Upon injury, the skin must quickly regenerate to regain its barrier function. In mammals, wound healing is rapid and scar free during embryogenesis, whereas in adults it involves multiple steps including blood clotting, inflammation, re-epithelialization, vascularization, and granulation tissue formation and maturation, resulting in a scar. We have established a rapid and robust method to introduce full-thickness wounds onto the flank of adult zebrafish, and show that apart from external fibrin clot formation, all steps of adult mammalian wound repair also exist in zebrafish. Wound re-epithelialization is extremely rapid and initiates with no apparent lag phase, subsequently followed by the immigration of inflammatory cells and the formation of granulation tissue, consisting of macrophages, fibroblasts, blood vessels, and collagen. The granulation tissue later regresses, resulting in minimal scar formation. Studies after chemical treatment or with transgenic fish further suggest that wound re-epithelialization occurs independently of inflammation and fibroblast growth factor signaling, whereas both are essential for fibroblast recruitment and granulation tissue formation. Together, these results demonstrate that major steps and principles of cutaneous wound healing are conserved among adult mammals and adult zebrafish, making zebrafish a valuable model for studying vertebrate skin repair

    Evaluation of Human Skin Reconstituted from Composite Grafts of Cultured Keratinocytes and Human Acellular Dermis Transplanted to Athymic Mice

    Get PDF
    This study evaluates the use of composite grafts of cultured human keratinocytes and de-epidermalized, acellular human dermis to close full-thickness wounds in athymic mice. Grafts were transplanted onto athymic mice and studied up to 8 wk. Graft take was excellent, with no instances of infection or graft loss. By 1 wk, the human keratinocytes had formed a stratified epidermis that was fused with mouse epithelium, and by 8 wk the grafts resembled human skin and could be freely moved over the mouse dorsum. Immunostaining for keratins 10 and 16 and for involucrin revealed an initial pattern of epithelial immaturity, which by 8 wk had normalized to that of mature unwounded epithelium. Mouse fibroblasts began to infiltrate the acellular dermis as early as 1 wk. By 8 wk fibroblasts had completely repopulated the dermis, and blood vessels were evident in the most superficial papillary projections, Dermal elements, such as rete ridges and elastin fibers, which were present in the starting dermis, persisted for the duration of the experiment. Grafts using keratinocytes from dark-skinned donors as opposed to light-skin donors had foci of pigmentation as early as 1 wk that progressed to homogenous pigmentation of the graft by 6 wk. These results indicate that melanocytes that persist in vitro are able to resume normal function in vivo. Our study demonstrates that composite grafts of cultured keratinocytes combined with acellular dermis are a useful approach for the closure of full-thickness wounds

    Dataset on the activation of Muller cells through macrophages upon hypoxia in the retina

    Get PDF
    The dataset presented in this article complements the article entitled “Myeloid cells contribute indirectly to VEGF expression upon hypoxia via activation of Müller cells” (C. Nürnberg, N. Kociok, C. Brockmann, T. Lischke, S. Crespo-Garcia, N. Reichhart, S. Wolf, R. Baumgrass, S.A. Eming, S. Beer- Hammer, and A.M. Joussen). This complementary dataset provides further insight into the experimental validation of the VEGFfl/fl LysMCre (here named VEGFmcko) knockout model used in the main article through genomic and quantitative Real-Time PCR in various murine tissues as well as additional flow cytometry data and immunohistochemical stainings. By providing these data, we aim to enable researcher to reproduce and critically analyze our data

    Epidermal mammalian target of rapamycin complex 2 controls lipid synthesis and filaggrin processing in epidermal barrier formation

    Get PDF
    Background: Perturbation of epidermal barrier formation will profoundly compromise overall skin function, leading to a dry and scaly, ichthyosis-like skin phenotype that is the hallmark of a broad range of skin diseases, including ichthyosis, atopic dermatitis, and a multitude of clinical eczema variants. An overarching molecular mechanism that orchestrates the multitude of factors controlling epidermal barrier formation and homeostasis remains to be elucidated. Objective: Here we highlight a specific role of mammalian target of rapamycin complex 2 (mTORC2) signaling in epidermal barrier formation. Methods: Epidermal mTORC2 signaling was specifically disrupted by deleting rapamycin-insensitive companion of target of rapamycin (Rictor), encoding an essential subunit of mTORC2 in mouse epidermis (epidermis-specific homozygous Rictor deletion [Ric(EKO)] mice). Epidermal structure and barrier function were investigated through a combination of gene expression, biochemical, morphological and functional analysis in Ric(EKO) and control mice. Results: Ric(EKO) newborns displayed an ichthyosis-like phenotype characterized by dysregulated epidermal de novo lipid synthesis, altered lipid lamellae structure, and aberrant filaggrin (FLG) processing. Despite a compensatory transcriptional epidermal repair response, the protective epidermal function was impaired in Ric(EKO) mice, as revealed by increased transepidermal water loss, enhanced corneocyte fragility, decreased dendritic epidermal T cells, and an exaggerated percutaneous immune response. Restoration of Akt-Ser473 phosphorylation in mTORC2-deficient keratinocytes through expression of constitutive Akt rescued FLG processing. Conclusion: Our findings reveal a critical metabolic signaling relay of barrier formation in which epidermal mTORC2 activity controls FLG processing and de novo epidermal lipid synthesis during cornification. Our findings provide novel mechanistic insights into epidermal barrier formation and could open up new therapeutic opportunities to restore defective epidermal barrier conditions.Peer reviewe

    Associated factors and comorbidities in patients with pyoderma gangrenosum in Germany: a retrospective multicentric analysis in 259 patients

    Get PDF
    Background: Pyoderma gangrenosum (PG) is a rarely diagnosed ulcerative neutrophilic dermatosis with unknown origin that has been poorly characterized in clinical studies so far. Consequently there have been significant discussions about its associated factors and comorbidities. The aim of our multicenter study was to analyze current data from patients in dermatologic wound care centers in Germany in order to describe associated factors and comorbidities in patients with PG. Methods: Retrospective clinical investigation of patients with PG from dermatologic wound care centers in Germany. Results: We received data from 259 patients with PG from 20 different dermatologic wound care centers in Germany. Of these 142 (54.8\%) patients were female, 117 (45.2\%) were male; with an age range of 21 to 95 years, and a mean of 58 years. In our patient population we found 45.6\% with anemia, 44.8\% with endocrine diseases, 12.4\% with internal malignancies, 9.3\% with chronic inflammatory bowel diseases and 4.3\% with elevated creatinine levels. Moreover 25.5\% of all patients had a diabetes mellitus with some aspects of potential association with the metabolic syndrome. Conclusions: Our study describes one of the world's largest populations with PG. Beside the well-known association with chronic bowel diseases and neoplasms, a potentially relevant new aspect is an association with endocrine diseases, in particular the metabolic syndrome, thyroid dysfunctions and renal disorders. Our findings represent clinically relevant new aspects. This may help to describe the patients' characteristics and help to understand the underlying pathophysiology in these often misdiagnosed patients

    Angiogenin released from ABCB5+ stromal precursors improves healing of diabetic wounds by promoting angiogenesis

    Get PDF
    Severe angiopathy is a major driver for diabetes-associated secondary complications. Knowledge on the underlying mechanisms essential for advanced therapies to attenuate these pathologies is limited. Injection of ABCB5+ stromal precursors at the edge of nonhealing diabetic wounds in a murine db/db model, closely mirroring human type 2 diabetes, profoundly accelerates wound closure. Strikingly, enhanced angiogenesis was substantially enforced by the release of the ribonuclease angiogenin from ABCB5+ stromal precursors. This compensates for the profoundly reduced angiogenin expression in nontreated murine chronic diabetic wounds. Silencing of angiogenin in ABCB5+ stromal precursors before injection significantly reduced angiogenesis and delayed wound closure in diabetic db/db mice, implying an unprecedented key role for angiogenin in tissue regeneration in diabetes. These data hold significant promise for further refining stromal precursors–based therapies of nonhealing diabetic foot ulcers and other pathologies with impaired angiogenesis

    WOUND HEALING MECHANISMS - THE ROLE OF MACROPHAGES

    No full text
    • …
    corecore