20 research outputs found

    Emilia Pardo Bazán, with special reference to her Galician novels

    Full text link
    Thesis (M.A.)--Boston Universit

    2015 Research & Innovation Day Program

    Get PDF
    A one day showcase of applied research, social innovation, scholarship projects and activities.https://first.fanshawec.ca/cri_cripublications/1002/thumbnail.jp

    Accelerated spreading of inviscid droplets prompted by the yielding of strongly elastic interfacial films

    Get PDF
    The complexity associated with droplets spreading on surfaces has attracted significant interest for several decades. Sustained activity results from the many natural and manufactured systems that are reliant on droplet-substrate interactions and spreading. Interfacial shear rheology and its influence on the dynamics of droplet spreading has to date received little attention. In the current study, saponin β-aescin was used as an interfacial shear rheology modifier, partitioning at the air-water interface to form a strongly elastic interface (G’/G” ∼ 6) within 1 min aging. The droplet spreading dynamics of Newtonian (water, 5 wt% ethanol, 0.0015 wt% N-dodecyl β-D-glucopyranoside) and non-Newtonian (xanthan gum) fluids were shown to proceed with a time-dependent power-law dependence of ∼0.50 and ∼0.10 (Tanner’s law) in the inertial and viscous regimes of spreading, respectively. However, water droplets stabilized by saponin β-aescin were shown to accelerate droplet spreading in the inertial regime with a depreciating time-dependent power-law of 1.05 and 0.61, eventually exhibiting a power-law dependence of ∼ 0.10 in the viscous regime of spreading. The accelerated rate of spreading is attributed to the potential energy as the interfacial film yields as well as relaxation of the crumpled interfacial film during spreading. Even though the strongly elastic film ruptures to promote droplet spreading, interfacial elasticity is retained enhancing the dampening of droplet oscillations following detachment from the dispensing capillary

    Synthesis and characterisation of lignin-like oligomers as a bio-inspired consolidant for waterlogged archaeological wood

    No full text
    The development of new materials for the consolidation of waterlogged archaeological wood from sustainable sources is an important area of research, as the most widely used consolidant today is petroleum based. Ideally a new consolidant will interact with the existing wood structure, ensuring maximum compatibility. Lignin is often the major component remaining in archaeological wood, as it is less susceptible to degradation than holocellulose. Therefore, in order to maximise the potential for interaction with the wood cells, lignin-like oligomers have been synthesized from isoeugenol using a water soluble copper salen catalyst at pH 10, giving a weight average Mw of 1.6 kDa. Analysis by NMR spectroscopy has shown that the oligomers have a lignin-like structure with β-O-4′, β-β′ and β-5′ connections. A 10 w/w% solution of the oligomers in ethyl acetate was found to thoroughly penetrate 1 cm3 samples of waterlogged archaeological wood (density of 0.146 g/mL, maximum water content of 620%) after 14 days impregnation, as determined by FTIR spectroscopy. No impregnation material could be seen by SEM, suggesting that it coats the cell walls upon drying. This indicates that dehydrogenated polymers penetrate waterlogged archaeological wood well and have the potential to be developed into consolidants

    Unexpected Pyrolytic Behaviour of Substituted Benzo[<em>c</em>]thiopyran and Thieno[2,3-<em>c</em>]thiopyran <em>S,S</em>-dioxides

    No full text
    Flash vacuum pyrolysis (FVP) of benzo[c]thiopyran S,S-dioxide 1 results in formation of indene and 2-vinylbenzaldehyde as previously described. A range of eight analogues with various substitution patterns are found to behave differently. In general there is no extrusion of SO2 to give products analogous to indene, but unsaturated carbonyl products analogous to 2-vinylbenzaldehyde are formed in most cases by way of ring expansion to a 7-membered ring sultine, extrusion of SO, and intramolecular hydrogen atom transfer. Other processes observed include formation of anthracene via an isomeric 7-membered sultine with loss of SO, CO and methane or butane, and formation of 4-ethylidene-4,5-dihydrocyclobuta[b]thiophenes by way of SO loss, a radical rearrangement and extrusion of acetone. The analogues with a halogen substituent at position 8 on the benzene ring require a higher temperature to react and give naphthalene resulting from net elimination of HX and SO2. The X-ray crystal structure of 1 is also reported.</p
    corecore