691 research outputs found

    Location-specific nanoplasmonic sensing of biomolecular binding to lipid membranes with negative curvature

    Get PDF
    The biochemical processes of cell membranes are sensitive to the geometry of the lipid bilayer. We show how plasmonic "nanowells" provide label-free real-time analysis of molecules on membranes with detection of preferential binding at negative curvature. It is demonstrated that norovirus accumulate in invaginations due to multivalent interactions with glycosphingolipids

    Polymer brushes in solid-state nanopores form an impenetrable entropic barrier for proteins

    Get PDF
    Polymer brushes are widely used to prevent the adsorption of proteins, but the mechanisms by which they operate have remained heavily debated for many decades. We show conclusive evidence that a polymer brush can be a remarkably strong kinetic barrier towards proteins by using poly(ethylene glycol) grafted to the sidewalls of pores in 30 nm thin gold films. Despite consisting of about 90% water, the free coils seal apertures up to 100 nm entirely with respect to serum protein translocation, as monitored label-free through the plasmonic activity of the nanopores. The conclusions are further supported by atomic force microscopy and fluorescence microscopy. A theoretical model indicates that the brush undergoes a morphology transition to a sealing state when the ratio between the extension and the radius of curvature is approximately 0.8. The brush-sealed pores represent a new type of ultrathin filter with potential applications in bioanalytical systems

    Stable trapping of multiple proteins at physiological conditions using nanoscale chambers with macromolecular gates

    Get PDF
    The possibility to detect and analyze single or few biological molecules is very important for understanding interactions and reaction mechanisms. Ideally, the molecules should be confined to a nanoscale volume so that the observation time by optical methods can be extended. However, it has proven difficult to develop reliable, non-invasive trapping techniques for biomolecules under physiological conditions. Here we present a platform for long-term tether-free (solution phase) trapping of proteins without exposing them to any field gradient forces. We show that a responsive polymer brush can make solid state nanopores switch between a fully open and a fully closed state with respect to proteins, while always allowing the passage of solvent, ions and small molecules. This makes it possible to trap a very high number of proteins (500-1000) inside nanoscale chambers as small as one attoliter, reaching concentrations up to 60 gL−1. Our method is fully compatible with parallelization by imaging arrays of nanochambers. Additionally, we show that enzymatic cascade reactions can be performed with multiple native enzymes under full nanoscale confinement and steady supply of reactants. This platform will greatly extend the possibilities to optically analyze interactions involving multiple proteins, such as the dynamics of oligomerization events

    Cognitive-behavioural therapy in medication-treated adults with attention-deficit/hyperactivity disorder and co-morbid psychopathology:a randomized controlled trial using multi-level analysis

    Get PDF
    Background. Attention-deficit/hyperactivity disorder (ADHD) is a neurodevelopmental disorder characterized by high rates of co-morbid psychopathology. Randomized controlled trials of multimodal interventions, combining pharmacological and psychological treatments, have shown a robust treatment effect for ADHD symptoms but outcomes for co-morbid symptoms have been mixed. This may be accounted for by the type of intervention selected and/or by methodological problems including lack of follow-up and low power. The current study addressed these limitations in a parallel-group randomized controlled trial conducted in Iceland.  Method. A total of 95 adult ADHD patients who were already being treated with medication (MED) were randomly assigned to receive treatment as usual (TAU/MED) or 15 sessions of cognitive-behavioural therapy (CBT/MED) using the R&R2ADHD intervention which employs both group and individual modalities. Primary measures of ADHD symptoms and severity of illness, and secondary measures of anxiety, depression and quality of life were given at baseline, end of treatment and 3-month follow-up. Primary outcomes were rated by clinicians blind to treatment condition assignment.  Results. CBT/MED showed overall (combined outcome at end of treatment and 3-month follow-up) significantly greater reduction in primary outcomes for clinician-rated and self-rated ADHD symptoms. Treatment effect of primary outcomes was maintained at follow-up, which suggests robust and lasting findings. In contrast to the primary outcomes, the secondary outcomes showed significant improvement over time.  Conclusions. The study provides evidence for the effectiveness of R&R2ADHD and demonstrates that there are differential effects over time for ADHD symptoms versus co-morbid problems, the latter taking longer to show positive effects

    Interaction Kinetics of Individual mRNA-Containing Lipid Nanoparticles with an Endosomal Membrane Mimic: Dependence on pH, Protein Corona Formation, and Lipoprotein Depletion

    Get PDF
    Lipid nanoparticles (LNPs) have emerged as potent carriers for mRNA delivery, but several challenges remain before this approach can offer broad clinical translation of mRNA therapeutics. To improve their efficacy, a better understanding is required regarding how LNPs are trapped and processed at the anionic endosomal membrane prior to mRNA release. We used surface-sensitive fluorescence microscopy with single LNP resolution to investigate the pH dependency of the binding kinetics of ionizable lipid-containing LNPs to a supported endosomal model membrane. A sharp increase of LNP binding was observed when the pH was lowered from 6 to 5, accompanied by stepwise large-scale LNP disintegration. For LNPs preincubated in serum, protein corona formation shifted the onset of LNP binding and subsequent disintegration to lower pH, an effect that was less pronounced for lipoprotein-depleted serum. The LNP binding to the endosomal membrane mimic was observed to eventually become severely limited by suppression of the driving force for the formation of multivalent bonds during LNP attachment or, more specifically, by charge neutralization of anionic lipids in the model membrane due to their association with cationic lipids from earlier attached LNPs upon their disintegration. Cell uptake experiments demonstrated marginal differences in LNP uptake in untreated and lipoprotein-depleted serum, whereas lipoprotein-depleted serum increased mRNA-controlled protein (eGFP) production substantially. This complies with model membrane data and suggests that protein corona formation on the surface of the LNPs influences the nature of the interaction between LNPs and endosomal membranes

    Gating Protein Transport in Solid State Nanopores by Single Molecule Recognition

    Get PDF
    Control of molecular translocation through nanoscale apertures is of great interest for DNA sequencing, biomolecular filters, and new platforms for single molecule analysis. However, methods for controlling the permeability of nanopores are very limited. Here, we show how nanopores functionalized with poly(ethylene glycol) brushes, which fully prevent protein translocation, can be reversibly gated to an "open" state by binding of single IgG antibodies that disrupt the macromolecular barrier. On the basis of surface plasmon resonance data we propose a two-state model describing the antibody-polymer interaction kinetics. Reversibly (weakly) bound antibodies decrease the protein exclusion height while irreversibly (strongly) bound antibodies do not. Our results are further supported by fluorescence readout from pore arrays and high-speed atomic force microscopy on single pores. This type of dynamic barrier control on the nanoscale provides new possibilities for biomolecular separation and analysis

    Coding and regulatory variants are associated with serum protein levels and disease.

    Get PDF
    Circulating proteins can be used to diagnose and predict disease-related outcomes. A deep serum proteome survey recently revealed close associations between serum protein networks and common disease. In the current study, 54,469 low-frequency and common exome-array variants were compared to 4782 protein measurements in the serum of 5343 individuals from the AGES Reykjavik cohort. This analysis identifies a large number of serum proteins with genetic signatures overlapping those of many diseases. More specifically, using a study-wide significance threshold, we find that 2021 independent exome array variants are associated with serum levels of 1942 proteins. These variants reside in genetic loci shared by hundreds of complex disease traits, highlighting serum proteins' emerging role as biomarkers and potential causative agents of a wide range of diseases
    corecore