94 research outputs found

    Review on sol-gel synthesis of perovskite and oxide nanomaterials

    Get PDF
    Altres ajuts: this work has been partially financed by the CERCA Programme/Generalitat de Catalunya.Sol-Gel is a low cost, well-established and flexible synthetic route to produce a wide range of micro- and nanostructures. Small variations in pH, temperature, precursors, time, pressure, atmosphere, among others, can lead to a wide family of compounds that share the same molecular structures. In this work, we present a general review of the synthesis of LaMnO, SrTiO, BaTiO perovskites and zinc vanadium oxides nanostructures based on Sol-Gel method. We discuss how small changes in the parameters of the synthesis can modify the morphology, shape, size, homogeneity, aggregation, among others, of the products. We also discuss the different precursors, solvents, working temperature, reaction times used throughout the synthesis. In the last section, we present novel uses of Sol-Gel with organic materials with emphasis on carbon-based compounds. All with a perspective to improve the method for future applications in different technological fields

    Thermal rectification and thermal logic gates in graded alloy semiconductors

    Get PDF
    Classical thermal rectification arises from the contact between two dissimilar bulk materials, each with a thermal conductivity (k) with a different temperature dependence. Here, we study thermal rectification in a SiGe alloy with a spatial dependence on the atomic composition. Rectification factors (R = k/k) of up to 3.41 were found. We also demonstrate the suitability of such an alloy for logic gates using a thermal AND gate as an example by controlling the thermal conductivity profile via the alloy composition. This system is readily extendable to other alloys, since it only depends on the effective thermal conductivity. These thermal devices are inherently advantageous alternatives to their electric counterparts, as they may be able to take advantage of otherwise undesired waste heat in the surroundings. Furthermore, the demonstration of logic operations is a step towards thermal computation

    Synthesis and optical characterization of Er-doped bismuth titanate nanoparticles grown by sol-gel hydrothermal method

    Get PDF
    The Er-doped bismuth titanate (BiTiO, BIT) nanoparticles were synthesized by a combined sol-gel and hydrothermal method under a partial oxygen pressure of 30 bar. The composition and morphology were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Raman scattering. They showed pure and homogeneous spherical BIT nanoparticles with a size below the 30 nm. The incorporation of Er ions showed a strong decrease in the lattice parameters, as well as averaged particle size. The photoluminescence up-conversion (excitation wavelength =1480 nm) showed an enhancement of the infrared emission (980 nm) as Er concentration increased, achieving a maximum for 6% mol, while photoluminescence spectra (excitation wavelength =473 nm) showed a strong green emission (529 and 553 nm) with a maximum at 4% mol

    Modification of Akhieser mechanism in Si nanomembranes and thermal conductivity dependence of the Q-factor of high frequency nanoresonators

    Get PDF
    We present and validate a reformulated Akhieser model that takes into account the reduction of thermal conductivity due to the impact of boundary scattering on the thermal phonons' lifetime. We consider silicon nanomembranes with mechanical mode frequencies in the GHz range as textbook examples of nanoresonators. The model successfully accounts for the measured shortening of the mechanical mode lifetime. Moreover, the thermal conductivity is extracted from the measured lifetime of the mechanical modes in the high-frequency regime, thereby demonstrating that the Q-factor can be used as an indication of the thermal conductivity and/or diffusivity of a mechanical resonator

    On the Enhancement of the Thermal Conductivity of Graphene-Based Nanofluids

    Get PDF
    Heat transfer fluids have been extensively used in both low-temperature and high temperature applications (e.g. microelectronics cooling and concentrated solar power). However, their low thermal conductivity is still a limit on performance. One way to enhance thermal properties is to disperse nanomaterials, such as graphene flakes in the base fluid. In this work, we have developed highly stable DMAc-graphene nanofluids with enhanced thermal properties. Furthermore, the displacement of several Raman bands as a function of graphene concentration in DMAc suggests that the solvent molecules are able to interact with graphene surfaces strongly

    Modification of Akhieser mechanism in Si nanomembranes and thermal conductivity dependence of the Q-factor of high frequency nanoresonators

    Get PDF
    We present and validate a reformulated Akhieser model that takes into account the reduction of thermal conductivity due to the impact of boundary scattering on the thermal phonons' lifetime. We consider silicon nanomembranes with mechanical mode frequencies in the GHz range as textbook examples of nanoresonators. The model successfully accounts for the measured shortening of the mechanical mode lifetime. Moreover, the thermal conductivity is extracted from the measured lifetime of the mechanical modes in the high-frequency regime, thereby demonstrating that the Q-factor can be used as an indication of the thermal conductivity and/or diffusivity of a mechanical resonator

    Subamorphous thermal conductivity of crystalline half-Heusler superlattices

    Get PDF
    En publicar-se l'article, l'autor Emigdio Chávez treballa a l'Institut Català de Nanociència i NanotecnologiaThe quest to improve the thermoelectric figure of merit has mainly followed the roadmap of lowering the thermal conductivity while keeping unaltered the power factor of the material. Ideally an electron-crystal phonon-glass system is desired. In this work, we report an extraordinary reduction of the cross-plane thermal conductivity in crystalline (TiNiSn):(HfNiSn) half-Heusler superlattices (SLs). We create SLs with thermal conductivities below the effective amorphous limit, which is kept in a large temperature range (120-300 K). We measured thermal conductivity at room temperature values as low as 0.75 W m⁻¹ K⁻¹, the lowest thermal conductivity value reported so far for half-Heusler compounds. By changing the deposition conditions, we also demonstrate that the thermal conductivity is highly impacted by the way the single segments of the SL grow. These findings show a huge potential for thermoelectric generators where an extraordinary reduction of the thermal conductivity is required but without losing the crystal quality of the syste

    Proyecto de inversión para la expansión de la cadena productiva de una empresa productora de arroz ubicada en el cantón Yaguachi

    Get PDF
    The objective of this research is to determine the feasibility of expanding the productive chain of the company, located in Canton Yaguachi, because the company wants to be part of the rice market as a provider of white rice, with expectations of obtain greater benefits To this purpose the company sees the need to expand its chain of production including the following stages: transportation to rice mill, dried, pounded, final product packaging and marketing. The problem for the enterprise lies in determining what would be the acceptance of the market to your product (milled rice variety F50), what are the costs you will incur to expand its production line, what will be its economic benefits once launched the expansion project

    Thermoreflectance techniques and Raman thermometry for thermal property characterization of nanostructures

    Get PDF
    This AIP article is published under license by AIP: https://publishing.aip.org/wp-content/uploads/2019/10/AIPP-Author-License.pdfPublishing.https://pubs.acs.org/page/policy/authorchoice_termsofuse.htmlAltres ajuts: ICN2 is supported by the CERCA Programme/Generalitat de Catalunya.The widespread use of nanostructures and nanomaterials has opened up a whole new realm of challenges in thermal management, but also leads to possibilities for energy conversion, storage, and generation, in addition to numerous other technological applications. At the microscale and below, standard thermal measurement techniques reach their limits, and several novel methods have been developed to overcome these limitations. Among the most recent, contactless photothermal methods have been widely used and have proved their advantages in terms of versatility, temporal and spatial resolution, and even sensitivity in some situations. Among them, thermoreflectance and Raman thermometry have been used to measure the thermal properties from bulk materials to thin films, multilayers, suspended structures, and nanomaterials. This Tutorial presents the principles of these two techniques and some of their most common implementations. It expands to more advanced systems for spatial mapping and for probing of non-Fourier thermal transport. Finally, this paper concludes with discussing the limitations and perspectives of these techniques and future directions in nanoscale thermometry

    Thermal conductivity of epitaxially grown InP : experiment and simulation

    Get PDF
    Altres ajuts: Catalan AGAURThe integration of III-V optoelectronic devices on silicon is confronted with the challenge of heat dissipation for reliable and stable operation. A thorough understanding and characterization of thermal transport is paramount for improved designs of, for example, viable III-V light sources on silicon. In this work, the thermal conductivity of heteroepitaxial laterally overgrown InP layers on silicon is experimentally investigated using microRaman thermometry. By examining InP mesa-like structures grown from trenches defined by a SiO mask, we found that the thermal conductivity decreases by about one third, compared to the bulk thermal conductivity of InP, with decreasing width from 400 to 250 nm. The high thermal conductivity of InP grown from 400 nm trenches was attributed to the lower defect density as the InP microcrystal becomes thicker. In this case, the thermal transport is dominated by phonon-phonon interactions as in a low defect-density monocrystalline bulk material, whereas for thinner InP layers grown from narrower trenches, the heat transfer is dominated by phonon scattering at the extended defects and InP/SiO interface. In addition to the nominally undoped sample, sulfur-doped (1 × 10 cm) InP grown on Si was also studied. For the narrower doped InP microcrystals, the thermal conductivity decreased by a factor of two compared to the bulk value. Sources of errors in the thermal conductivity measurements are discussed. The experimental temperature rise was successfully simulated by the heat diffusion equation using the FEM
    corecore