8 research outputs found

    ILC2-mediated immune crosstalk in chronic (vascular) inflammation

    Get PDF
    Crosstalk between innate and adaptive immunity is pivotal for an efficient immune response and to maintain immune homeostasis under steady state conditions. As part of the innate immune system, type 2 innate lymphoid cells (ILC2s) have emerged as new important regulators of tissue homeostasis and repair by fine-tuning innate-adaptive immune cell crosstalk. ILC2s mediate either pro- or anti-inflammatory immune responses in a context dependent manner. Inflammation has proven to be a key driver of atherosclerosis, resembling the key underlying pathophysiology of cardiovascular disease (CVD). Notably, numerous studies point towards an atheroprotective role of ILC2s e.g., by mediating secretion of type-II cytokines (IL-5, IL-13, IL-9). Boosting these protective responses may be suitable for promising future therapy, although these protective cues are currently incompletely understood. Additionally, little is known about the mechanisms by which chemokine/chemokine receptor signaling shapes ILC2 functions in vascular inflammation and atherosclerosis. Hence, this review will focus on the latest findings regarding the protective and chemokine/chemokine receptor guided interplay between ILC2s and other immune cells like T and B cells, dendritic cells and macrophages in atherosclerosis. Further, we will elaborate on potential therapeutic implications which result or could be distilled from the dialogue of ILC2s with cells of the immune system in cardiovascular diseases

    ITIH5 as a multifaceted player in pancreatic cancer suppression, impairing tyrosine kinase signaling, cell adhesion and migration

    Get PDF
    Inter-alpha-trypsin inhibitor heavy chain 5 (ITIH5) has been identified as a metastasis suppressor gene in pancreatic cancer. Here, we analyzed ITIH5 promoter methylation and protein expression in The Cancer Genome Atlas (TCGA) dataset and three tissue microarray cohorts (n = 618), respectively. Cellular effects, including cell migration, focal adhesion formation and protein tyrosine kinase activity, induced by forced ITIH5 expression in pancreatic cancer cell lines were studied in stable transfectants. ITIH5 promoter hypermethylation was associated with unfavorable prognosis, while immunohistochemistry demonstrated loss of ITIH5 in the metastatic setting and worsened overall survival. Gain-of-function models showed a significant reduction in migration capacity, but no alteration in proliferation. Focal adhesions in cells re-expressing ITIH5 exhibited a smaller and more rounded phenotype, typical for slow-moving cells. An impressive increase of acetylated alpha-tubulin was observed in ITIH5-positive cells, indicating more stable microtubules. In addition, we found significantly decreased activities of kinases related to focal adhesion. Our results indicate that loss of ITIH5 in pancreatic cancer profoundly affects its molecular profile: ITIH5 potentially interferes with a variety of oncogenic signaling pathways, including the PI3K/AKT pathway. This may lead to altered cell migration and focal adhesion formation. These cellular alterations may contribute to the metastasis-inhibiting properties of ITIH5 in pancreatic cancer.</p

    Inflammatory Chemokines in Atherosclerosis

    Get PDF
    Atherosclerosis is a long-term, chronic inflammatory disease of the vessel wall leading to the formation of occlusive or rupture-prone lesions in large arteries. Complications of atherosclerosis can become severe and lead to cardiovascular diseases (CVD) with lethal consequences. During the last three decades, chemokines and their receptors earned great attention in the research of atherosclerosis as they play a key role in development and progression of atherosclerotic lesions. They orchestrate activation, recruitment, and infiltration of immune cells and subsequent phenotypic changes, e.g., increased uptake of oxidized low-density lipoprotein (oxLDL) by macrophages, promoting the development of foam cells, a key feature developing plaques. In addition, chemokines and their receptors maintain homing of adaptive immune cells but also drive pro-atherosclerotic leukocyte responses. Recently, specific targeting, e.g., by applying cell specific knock out models have shed new light on their functions in chronic vascular inflammation. This article reviews recent findings on the role of immunomodulatory chemokines in the development of atherosclerosis and their potential for targeting

    CCR6 Deficiency Increases Infarct Size after Murine Acute Myocardial Infarction

    No full text
    Ischemia-reperfusion injury after the reopening of an occluded coronary artery is a major cause of cardiac damage and inflammation after acute myocardial infarction. The chemokine axis CCL20-CCR6 is a key player in various inflammatory processes, including atherosclerosis; however, its role in ischemia-reperfusion injury has remained elusive. Therefore, to gain more insight into the role of the CCR6 in acute myocardial infarction, we have studied cardiac injury after transient ligation of the left anterior descending coronary artery followed by reperfusion in Ccr6−/− mice and their respective C57Bl/6 wild-type controls. Surprisingly, Ccr6−/− mice demonstrated significantly reduced cardiac function and increased infarct sizes after ischemia/reperfusion. This coincided with a significant increase in cardiac inflammation, characterized by an accumulation of neutrophils and inflammatory macrophage accumulation. Chimeras with a bone marrow deficiency of CCR6 mirrored this adverse Ccr6−/− phenotype, while cardiac injury was unchanged in chimeras with stromal CCR6 deficiency. This study demonstrates that CCR6-dependent (bone marrow) cells exert a protective role in myocardial infarction and subsequent ischemia-reperfusion injury, supporting the notion that augmenting CCR6-dependent immune mechanisms represents an interesting therapeutic target

    ITIH5 as a multifaceted player in pancreatic cancer suppression, impairing tyrosine kinase signaling, cell adhesion and migration

    Get PDF
    Inter-alpha-trypsin inhibitor heavy chain 5 (ITIH5) has been identified as a metastasis suppressor gene in pancreatic cancer. Here, we analyzed ITIH5 promoter methylation and protein expression in The Cancer Genome Atlas (TCGA) dataset and three tissue microarray cohorts (n = 618), respectively. Cellular effects, including cell migration, focal adhesion formation and protein tyrosine kinase activity, induced by forced ITIH5 expression in pancreatic cancer cell lines were studied in stable transfectants. ITIH5 promoter hypermethylation was associated with unfavorable prognosis, while immunohistochemistry demonstrated loss of ITIH5 in the metastatic setting and worsened overall survival. Gain-of-function models showed a significant reduction in migration capacity, but no alteration in proliferation. Focal adhesions in cells re-expressing ITIH5 exhibited a smaller and more rounded phenotype, typical for slow-moving cells. An impressive increase of acetylated alpha-tubulin was observed in ITIH5-positive cells, indicating more stable microtubules. In addition, we found significantly decreased activities of kinases related to focal adhesion. Our results indicate that loss of ITIH5 in pancreatic cancer profoundly affects its molecular profile: ITIH5 potentially interferes with a variety of oncogenic signaling pathways, including the PI3K/AKT pathway. This may lead to altered cell migration and focal adhesion formation. These cellular alterations may contribute to the metastasis-inhibiting properties of ITIH5 in pancreatic cancer.</p

    Advancements in risk stratification and management strategies in primary cardiovascular prevention

    No full text
    Atherosclerotic cardiovascular disease (ASCVD) remains a leading cause of morbidity and mortality worldwide, highlighting the urgent need for advancements in risk ssessment and management strategies. Although significant progress has been made ecently, identifying and managing apparently healthy individuals at a higher risk of developing atherosclerosis and those with subclinical atherosclerosis still poses significant challenges. Traditional risk assessment tools have limitations in accurately predicting future events and fail to encompass the complexity of the atherosclerosis trajectory. In this review, we describe novel approaches in biomarkers, genetics, advanced imaging techniques, and artificial intelligence that have emerged to address this gap. Moreover, polygenic risk scores and imaging modalities such as coronary artery calcium scoring, and coronary computed tomography angiography offer promising avenues for enhancing primary cardiovascular risk stratification and personalised intervention strategies. On the other hand, interventions aiming against atherosclerosis development or promoting plaque regression have gained attention in primary ASCVD prevention. Therefore, the potential role of drugs like statins, ezetimibe, proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors, omega-3 fatty acids, antihypertensive agents, as well as glucose-lowering and anti-inflammatory drugs are also discussed. Since findings regarding the efficacy of these interventions vary, further research is still required to elucidate their mechanisms of action, optimize treatment regimens, and determine their long-term effects on ASCVD outcomes. In conclusion, advancements in strategies addressing atherosclerosis prevention and plaque regression present promising avenues for enhancing primary ASCVD prevention through personalised approaches tailored to individual risk profiles. Nevertheless, ongoing research efforts are imperative to refine these strategies further and maximise their effectiveness in safeguarding cardiovascular health.Highlights: - Recent advancements in ASCVD management focus on identifying at-risk individuals and plaque regression strategies; - ASCVD can manifest without traditional risk factors, necessitating a paradigm shift in preventive approaches; - Targeting plaque progression rather than just traditional risk factors is crucial for preventing adverse events; - Personalised medicine, advanced imaging, and biomarker research offer new avenues for refining risk stratification; - Integrating genetic, imaging, and biomarker data, alongside AI tools, promises to optimize cardiovascular risk management.M.A.-R. received a Postdoctoral Junior Leader - INCOMING Fellow ship from “la Caixa” Foundation (ID: 100010434) and from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska Curie grant agreement No. 847648 (fellowship code: LCF/BQ/PI21/11830009). C.M. is supported by piano di sostegno alla ricerca dotazione 2022 (LINEA 2 AZIONE A), University of Milan. E. R.S. is supported by an AHA grant with the reference 24POST1183446. L.R. is funded by the Research Council of the University of Antwerp (BOF UAntwerp ID: 45846) and the Fund for Scientific Research (FWO)- Flanders (G060723N). E.P.C.v.d.V. is supported by a grant from the Interdisciplinary Center for Clinical Research within the faculty of Medicine at the RWTH Aachen University.info:eu-repo/semantics/publishedVersio
    corecore