26 research outputs found

    Both apoptosis and necrosis occur early after intracerebral grafting of ventral mesencephalic tissue: a role for protease activation.

    Get PDF
    Neural transplantation is an experimental treatment for Parkinson's disease. Widespread clinical application of the grafting technique is hampered by a relatively poor survival (around 10%) of implanted embryonic dopamine neurones. Earlier animal studies have indicated that a large proportion of the grafted cells die during graft tissue preparation and within the first few days after intracerebral implantation. The present study was designed to reveal the prevalence of cell death in rat intrastriatal grafts at 90 min, 1, 3, 6 and 42 days after implantation. We examined apoptotic cell death using semi-thin and paraffin sections stained with methylene blue and an antibody against activated caspase 3, respectively. We identified abundant apoptotic cell death up to 3 days after transplantation. In addition, we studied calpain activation using an antibody specific for calpain-cleaved fodrin. We report a peak in calpain activity 90 min after grafting. Surprisingly, we did not observe any significant difference in the number of dopaminergic neurones over time. The present results imply that grafted cells may be victims of either an early necrotic or a later apoptotic cell death and that there is substantial cell death as early as 90 min after implantation

    Robust T cell immunity in convalescent individuals with asymptomatic or mild COVID-19

    Get PDF
    SARS-CoV-2-specific memory T cells will likely prove critical for long-term immune protection against COVID-19. Here, we systematically mapped the functional and phenotypic landscape of SARS-CoV-2-specific T cell responses in unexposed individuals, exposed family members, and individuals with acute or convalescent COVID-19. Acute-phase SARS-CoV-2-specific T cells displayed a highly activated cytotoxic phenotype that correlated with various clinical markers of disease severity, whereas convalescent-phase SARS-CoV-2-specific T cells were polyfunctional and displayed a stem-like memory phenotype. Importantly, SARS-CoV-2-specific T cells were detectable in antibody-seronegative exposed family members and convalescent individuals with a history of asymptomatic and mild COVID-19. Our collective dataset shows that SARS-CoV-2 elicits broadly directed and functionally replete memory T cell responses, suggesting that natural exposure or infection may prevent recurrent episodes of severe COVID-19

    Factors Influencing Functional Heterogeneity in Human Mucosa-Associated Invariant T Cells

    No full text
    Mucosa-associated invariant T (MAIT) cells are unconventional innate-like T cells that recognize microbial riboflavin metabolites presented by the monomorphic MHC class I-related (MR1) molecule. Despite the high level of evolutionary conservation of MR1 and the limited diversity of known antigens, human MAIT cells and their responses may not be as homogeneous as previously thought. Here, we review recent findings indicating that MAIT cells display microbe-specific response patterns with multiple layers of heterogeneity. The natural killer cell receptor CD56 marks a MAIT cell subset with distinct response profile, and the T cell receptor β-chain diversity influences responsiveness at the single cell level. The MAIT cell tissue localization also influences their response profiles with higher IL-17 in tissue-resident MAIT cells. Furthermore, there is emerging evidence that the type of antigen-presenting cells, and innate cytokines produced by such cells, influence the quality of the ensuing MAIT cell response. On the microbial side, the expression patterns of MR1-presented antigenic and non-antigenic compounds, expression of other bioactive microbial products, and of innate pattern recognition ligands all influence downstream MAIT cell responses. These recent findings deepen our understanding of MAIT cell functional diversity and adaptation to the type and location of microbial challenge
    corecore