11,019 research outputs found

    The Definition and Computation of a Metric on Plane Curves. The Meaning of a Face on a Geometric Model

    Get PDF
    Two topics in topology, the comparison of plane curves and faces on geometric models, are discussed. With regard to the first problem, a curve is defined to be a locus of points without any underlying parameterization. A metric on a class of plane curves is defined, a finite computation of this metric is given for the case of piecewise linear curves, and it is shown how to approximate curves that have bounded curvature by piecewise linear curves. In this way a bound on the distance between two curves can be computed. With regard to the second problem, the questions to be discussed are under what circumstances do geometrical faces make sense; how can they be explicity defined; and when are these geometrical faces homeomorphic to the realization of the abstract (topological) face

    Phase diagram of the one-dimensional half-filled extended Hubbard model

    Full text link
    We study the ground state of the one-dimensional half-filled Hubbard model with on-site (nearest-neighbor) repulsive interaction UU (VV) and nearest-neighbor hopping tt. In order to obtain an accurate phase diagram, we consider various physical quantities such as the charge gap, spin gap, Luttinger-liquid exponents, and bond-order-wave (BOW) order parameter using the density-matrix renormalization group technique. We confirm that the BOW phase appears in a substantial region between the charge-density-wave (CDW) and spin-density-wave phases. Each phase boundary is determined by multiple means and it allows us to do a cross-check to demonstrate the validity of our estimations. Thus, our results agree quantitatively with the renormalization group results in the weak-coupling regime (U≲2tU \lesssim 2t), with the perturbation results in the strong-coupling regime (U≳6tU \gtrsim 6t), and with the quantum Monte Carlo results in the intermediate-coupling regime. We also find that the BOW-CDW transition changes from continuous to first order at the tricritical point (Ut,Vt)≈(5.89t,3.10t)(U_{\rm t}, V_{\rm t}) \approx (5.89t, 3.10t) and the BOW phase vanishes at the critical end point (Uc,Vc)≈(9.25t,4.76t)(U_{\rm c}, V_{\rm c}) \approx (9.25t, 4.76t).Comment: 4 pages, 5 figure

    Experimental study of acoustic displays of flight parameters in a simulated aerospace vehicle

    Get PDF
    Evaluating acoustic displays of target location in target detection and of flight parameters in simulated aerospace vehicle

    Evidence of Electron Fractionalization from Photoemission Spectra in the High Temperature Superconductors

    Full text link
    In the normal state of the high temperature superconductors Bi_2Sr_2CaCu_2O_{8+delta} and La_{2-x}Sr_{x}CuO_4, and in the related ``stripe ordered'' material La_1.25Nd_0.6Sr_0.15CuO_4, there is sharp structure in the measured single hole spectral function A(k,w) considered as a function of k at fixed small binding energy w. At the same time, as a function of w at fixed k on much of the putative Fermi surface, any structure in A(k,w), other than the Fermi cutoff, is very broad. This is characteristic of the situation in which there are no stable excitations with the quantum numbers of the electron, as is the case in the one dimensional electron gas.Comment: Published versio

    Properties of charge density waves in La2−x_{2-x}Bax_{x}CuO4_4

    Full text link
    We report a comprehensive x-ray scattering study of charge density wave (stripe) ordering in La2−xBaxCuO4(x≈1/8)\rm La_{2-x}Ba_xCuO_4 (x \approx 1/8), for which the superconducting TcT_c is greatly suppressed. Strong superlattice reflections corresponding to static ordering of charge stripes were observed in this sample. The structural modulation at the lowest temperature was deduced based on the intensity of over 70 unique superlattice positions surveyed. We found that the charge order in this sample is described with one-dimensional charge density waves, which have incommensurate wave-vectors (0.23, 0, 0.5) and (0, 0.23, 0.5) respectively on neighboring CuO2\rm CuO_2 planes. The structural modulation due to the charge density wave order is simply sinusoidal, and no higher harmonics were observed. Just below the structural transition temperature, short-range charge density wave correlation appears, which develops into a large scale charge ordering around 40 K, close to the spin density wave ordering temperature. However, this charge ordering fails to grow into a true long range order, and its correlation length saturates at ∼230A˚\sim 230\AA, and slightly decreases below about 15 K, which may be due to the onset of two-dimensional superconductivity.Comment: 11 pages, 9 figure

    Weakly correlated electrons on a square lattice: a renormalization group theory

    Full text link
    We study the weakly interacting Hubbard model on the square lattice using a one-loop renormalization group approach. The transition temperature T_c between the metallic and (nearly) ordered states is found. In the parquet regime, (T_c >> |mu|), the dominant correlations at temperatures below T_c are antiferromagnetic while in the BCS regime (T_c << |mu|) at T_c the d-wave singlet pairing susceptibility is most divergent.Comment: 12 pages, REVTEX, 3 figures included, submitted to Phys. Rev. Let

    On the Validity of the Tomonaga Luttinger Liquid Relations for the One-dimensional Holstein Model

    Get PDF
    For the one-dimensional Holstein model, we show that the relations among the scaling exponents of various correlation functions of the Tomonaga Luttinger liquid (LL), while valid in the thermodynamic limit, are significantly modified by finite size corrections. We obtain analytical expressions for these corrections and find that they decrease very slowly with increasing system size. The interpretation of numerical data on finite size lattices in terms of LL theory must therefore take these corrections into account. As an important example, we re-examine the proposed metallic phase of the zero-temperature, half-filled one-dimensional Holstein model without employing the LL relations. In particular, using quantum Monte Carlo calculations, we study the competition between the singlet pairing and charge ordering. Our results do not support the existence of a dominant singlet pairing state.Comment: 7 page
    • …
    corecore