11,004 research outputs found

    A comparison of the finite difference and finite element methods for heat transfer calculations

    Get PDF
    The finite difference method and finite element method for heat transfer calculations are compared by describing their bases and their application to some common heat transfer problems. In general it is noted that neither method is clearly superior, and in many instances, the choice is quite arbitrary and depends more upon the codes available and upon the personal preference of the analyst than upon any well defined advantages of one method. Classes of problems for which one method or the other is better suited are defined

    Experimental study of acoustic displays of flight parameters in a simulated aerospace vehicle

    Get PDF
    Evaluating acoustic displays of target location in target detection and of flight parameters in simulated aerospace vehicle

    Detection of early osteogenic commitment in primary cells using Raman spectroscopy

    Get PDF
    Major challenges in the development of novel implant surfaces for artificial joints include osteoblast heterogeneity and the lack of a simple and sensitive in vitro assay to measure early osteogenic responses. Raman spectroscopy is a label-free, non-invasive and non-destructive vibrational fingerprinting optical technique that is increasingly being applied to detect biochemical changes in cells. In this study Raman spectroscopy has been used to obtain bone cell-specific spectral signatures and to identify any changes therein during osteoblast commitment and differentiation of primary cells in culture. Murine calvarial osteoblasts (COBs) were extracted and cultured and studied by Raman spectroscopy over a 14 day culture period. Distinct osteogenic Raman spectra were identified after 3 days of culture with strong bands detected for mineral: phosphate ν3 (1030 cm−1) and B-type carbonate (1072 cm−1), DNA (782 cm−1) and collagen matrix (CH2 deformation at 1450 cm−1) and weaker phosphate bands (948 and 970 cm−1). Early changes were detected by Raman spectroscopy compared to a standard enzymatic alkaline phosphatase (ALP) assay and gene expression analyses over this period. Proliferation of COBs was confirmed by fluorescence intensity measurements using the Picogreen dsDNA reagent. Changes in ALP levels were evident only after 14 days of culture and mRNA expression levels for ALP, Col1a1 and Sclerostin remained constant during the culture period. Sirius red staining for collagen deposition also revealed little change until day 14. In contrast Raman spectroscopy revealed the presence of amorphous calcium phosphate (945–952 cm−1) and carbonated apatite (957–962 cm−1) after only 3 days in culture and octacalcium phosphate (970 cm−1) considered a transient mineral phase, was detected after 5 days of COBs culture. PCA analysis confirmed clear separation between time-points. This study highlights the potential of Raman spectroscopy to be utilised for the early and specific detection of proliferation and differentiation changes in primary cultures of bone cells

    Interactive computation of radiation view factors

    Get PDF
    The development of a pair of computer programs to calculate the radiation exchange view factors is described. The surface generation program is based upon current graphics capabilities and includes special provisions which are unique to the radiation problem. The calculational program uses a combination of contour and double area integration to permit consideration of radiation with obstruction surfaces. Examples of the surface generation and the calculation are given

    Vitamin K catabolite inhibition of ovariectomy-induced bone loss: Structure–activity relationship considerations

    Get PDF
    The potential benefit of vitamin K as a therapeutic in osteoporosis is controversial and the vitamin K regimen being used clinically (45 mg/day) employs doses that are many times higher than required to ensure maximal gamma‐carboxylation of the vitamin K‐dependent bone proteins. We therefore tested the hypothesis that vitamin K catabolites, 5‐carbon (CAN5C) and 7‐carbon carboxylic acid (CAN7C) aliphatic side‐chain derivatives of the naphthoquinone moiety exert an osteotrophic role consistent with the treatment of osteoporosis

    Local origins impart conserved bone type-related differences in human osteoblast behaviour

    Get PDF
    Osteogenic behaviour of osteoblasts from trabecular, cortical and subchondral bone were examined to determine any bone type-selective differences in samples from both osteoarthritic (OA) and osteoporotic (OP) patients. Cell growth, differentiation; alkaline phosphatase (TNAP) mRNA and activity, Runt-related transcription factor-2 (RUNX2), SP7-transcription factor (SP7), bone sialoprotein-II (BSP-II), osteocalcin/bone gamma-carboxyglutamate (BGLAP), osteoprotegerin (OPG, TNFRSF11B), receptor activator of nuclear factor-κβ ligand (RANKL, TNFSF11) mRNA levels and proangiogenic vascular endothelial growth factor-A (VEGF-A) mRNA and protein release were assessed in osteoblasts from paired humeral head samples from age-matched, human OA/OP (n = 5/4) patients. Initial outgrowth and increase in cell number were significantly faster (p < 0.01) in subchondral and cortical than trabecular osteoblasts, in OA and OP, and this bone type-related differences were conserved despite consistently faster growth in OA. RUNX2/SP7 levels and TNAP mRNA and protein activity were, however, greater in trabecular than subchondral and cortical osteoblasts in OA and OP. BSP-II levels were significantly greater in trabecular and lowest in cortical osteoblasts in both OA and OP. In contrast, BGLAP levels showed divergent bone type-selective behaviour; highest in osteoblasts from subchondral origins in OA and trabecular origins in OP. We found virtually identical bone type-related differences, however, in TNFRSF11B:TNFSF11 in OA and OP, consistent with greater potential for paracrine effects on osteoclasts in trabecular osteoblasts. Subchondral osteoblasts (OA) exhibited highest VEGF-A mRNA levels and release. Our data indicate that human osteoblasts in trabecular, subchondral and cortical bone have inherent, programmed diversity, with specific bone type-related differences in growth, differentiation and pro-angiogenic potential in vitro

    Respective influences of pair breaking and phase fluctuations in disordered high Tc superconductors

    Full text link
    Electron irradiation has been used to introduce point defects in a controlled way in the CuO2 planes of underdoped and optimally doped YBCO. This technique allows us to perform very accurate measurements of Tc and of the residual resistivity in a wide range of defect contents xd down to Tc=0. The Tc decrease does not follow the variation expected from pair breaking theories. The evolutions of Tc and of the transition width with xd emphasize the importance of phase fluctuations, at least for the highly damaged regime. These results open new questions about the evolution of the defect induced Tc depression over the phase diagram of the cupratesComment: 5 pages, 4 figure

    On the Validity of the Tomonaga Luttinger Liquid Relations for the One-dimensional Holstein Model

    Get PDF
    For the one-dimensional Holstein model, we show that the relations among the scaling exponents of various correlation functions of the Tomonaga Luttinger liquid (LL), while valid in the thermodynamic limit, are significantly modified by finite size corrections. We obtain analytical expressions for these corrections and find that they decrease very slowly with increasing system size. The interpretation of numerical data on finite size lattices in terms of LL theory must therefore take these corrections into account. As an important example, we re-examine the proposed metallic phase of the zero-temperature, half-filled one-dimensional Holstein model without employing the LL relations. In particular, using quantum Monte Carlo calculations, we study the competition between the singlet pairing and charge ordering. Our results do not support the existence of a dominant singlet pairing state.Comment: 7 page

    Charged excitons in doped extended Hubbard model systems

    Full text link
    We show that the charge transfer excitons in a Hubbard model system including nearest neighbor Coulomb interactions effectively attain some charge in doped systems and become visible in photoelectron and inverse photoelectron spectroscopies. This shows that the description of a doped system by an extended Hubbard model differs substantially from that of a simple Hubbard model. Longer range Coulomb interactions cause satellites in the one electron removal and addition spectra and the appearance of spectral weight if the gap of doped systems at energies corresponding to the excitons of the undoped systems. The spectral weight of the satellites is proportional to the doping times the coordination number and therefore is strongly dependent on the dimension.Comment: 10 pages revtex, 5 figures ps figures adde
    corecore