1,051 research outputs found
Quantifying the effects of commercial clam aquaculture on C and N cycling : an integrated ecosystem approach
Author Posting. © The Author(s), 2016. This is the author's version of the work. It is posted here by permission of Coastal and Estuarine Research Federation for personal use, not for redistribution. The definitive version was published in Estuaries and Coasts 39 (2016): 1746–1761, doi: 10.1007/s12237-016-0106-0.Increased interest in using bivalve cultivation to mitigate eutrophication requires a
comprehensive understanding of the net carbon (C) and nitrogen (N) budgets associated with
cultivation on an ecosystem scale. This study quantified C and N processes related to clam
(Mercenaria mercenaria) aquaculture in a shallow coastal environment (Cherrystone Inlet, VA)
where the industry has rapidly increased. Clam physiological rates were compared with basin-wide ecosystem fluxes including primary production, benthic nutrient regeneration, and
respiration. Although clam beds occupy only 3% of the ecosystem’s surface area, clams filtered
7-44% of the system’s volume daily, consumed an annual average of 103% of the phytoplankton
production, creating a large flux of particulate C and N to the sediments. Annually, N
regenerated and C respired by clam and microbial metabolism in clam beds were ~3-fold and
~1.5-fold higher, respectively, than N and C removed through harvest. Due to the short water
residence time, the low watershed load, and the close vicinity of clam beds to the mouth of
Cherrystone Inlet, cultivated clams are likely subsidized by phytoplankton from the Chesapeake
Bay. Consequently, much of the N released by mineralization associated with clam cultivation is
‘new’ N as it would not be present in the system without bivalve facilitation. Macroalgae that are
fueled by the enhanced N regeneration from clams represents a eutrophying process resulting
from aquaculture. This synthesis demonstrates the importance of considering impacts of bivalve
aquaculture in an ecosystem context especially relative to the potential of bivalves to remove
nutrients and enhance C sinks.This work was supported by Virginia Sea Grant (NA10OAR4170085, #R/71515W, #R/715168), the NSF GK12 Fellowship (DGE-0840804), the Strategic Environmental Research and
Development Program – Defense Coastal/Estuarine Research Program Project SI-1413, and NSF
Virginia Coast Reserve LTER Project (DEB 0080381, DEB 0621014).2017-05-1
The role of inputs of marine wrack and carrion in sandy-beach ecosystems: A global review
Sandy beaches are iconic interfaces that functionally link the ocean with the land via the flow of organic matter from the sea. These cross-ecosystem fluxes often comprise uprooted seagrass and dislodged macroalgae that can form substantial accumulations of detritus, termed ‘wrack’, on sandy beaches. In addition, the tissue of the carcasses of marine animals that regularly wash up on beaches form a rich food source (‘carrion’) for a diversity of scavenging animals. Here, we provide a global review of how wrack and carrion provide spatial subsidies that shape the structure and functioning of sandy-beach ecosystems (sandy beaches and adjacent surf zones), which typically have little in situ primary production. We also examine the spatial scaling of the influence of these processes across the broader land- and seascape, and identify key gaps in our knowledge to guide future research directions and priorities. Large quantities of detrital kelp and seagrass can flow into sandy-beach ecosystems, where microbial decomposers and animals process it. The rates of wrack supply and its retention are influenced by the oceanographic processes that transport it, the geomorphology and landscape context of the recipient beaches, and the condition, life history and morphological characteristics of the macrophyte taxa that are the ultimate source of wrack. When retained in beach ecosystems, wrack often creates hotspots of microbial metabolism, secondary productivity, biodiversity, and nutrient remineralization. Nutrients are produced during wrack breakdown, and these can return to coastal waters in surface flows (swash) and aquifers discharging into the subtidal surf. Beach-cast kelp often plays a key trophic role, being an abundant and preferred food source for mobile, semi-aquatic invertebrates that channel imported algal matter to predatory invertebrates, fish, and birds. The role of beach-cast marine carrion is likely to be underestimated, as it can be consumed rapidly by highly mobile scavengers (e.g. foxes, coyotes, raptors, vultures). These consumers become important vectors in transferring marine productivity inland, thereby linking marine and terrestrial ecosystems. Whilst deposits of organic matter on sandy-beach ecosystems underpin a range of ecosystem functions and services, they can be at variance with aesthetic perceptions resulting in widespread activities, such as ‘beach cleaning and grooming’. This practice diminishes the energetic base of food webs, intertidal fauna, and biodiversity. Global declines in seagrass beds and kelp forests (linked to global warming) are predicted to cause substantial reductions in the amounts of marine organic matter reaching many beach ecosystems, likely causing flow-on effects for food webs and biodiversity. Similarly, future sea-level rise and increased storm frequency are likely to alter profoundly the physical attributes of beaches, which in turn can change the rates at which beaches retain and process the influxes of wrack and animal carcasses. Conservation of the multi-faceted ecosystem services that sandy beaches provide will increasingly need to encompass a greater societal appreciation and the safeguarding of ecological functions reliant on beach-cast organic matter on innumerable ocean shores worldwide
Using dune restoration on an urban beach as a coastal resilience approach
Coastal dunes are globally recognized as natural features that can be important adaptation approaches for climate change along urban and natural shores. We evaluated the recovery of coastal dunes on an intensively groomed urban beach in southern California over a six-year period after grooming was discontinued. Restoration actions were minimal and included installation of three sides of perimeter sand fencing, cessation of mechanical grooming and driving, and the addition of seeds of native dune plants. To track recovery, we conducted physical and biological surveys of the restoration site and an adjacent control site (groomed beach) using metrics including sand accretion, elevation, foredune and hummock formation, vegetation recovery, and wildlife use. Sediment accretion, elevation, and geomorphic complexity increased over time in the restoration site, largely in association with sand fencing and dune vegetation. A foredune ridge (maximum elevation increase of 0.9 m) and vegetated hummocks developed, along with a general increase in elevation across the restoration site (0.3 m). After six years, an estimated total volume of approximately 1,730 m3 of sand had accreted in the restoration site and 540 m3 of sand had accreted in the foredune ridge. Over the same period, more than a meter of sediment (vertical elevation change) accumulated along the perimeter sand fencing. Groomed control areas remained flat and uniform. The total cover of vegetation in the restoration site increased over time to a maximum of approximately 7% cover by the sixth year. No vegetation was observed on the groomed control site. Native plant species formed distinct zones across the restoration site beginning by the second year and increasing over time, with dune forming species aggregating closest to the ocean in association with the incipient foredune ridge. Ecological functions observed in the restoration area included presence of dune invertebrates, shorebird roosting, and use by a breeding federally threatened shorebird, the western snowy plover (Charadrius nivosus nivosus). Our findings on geomorphic and ecological responses of a pilot dune restoration on a heavily groomed urban beach provide new insights on the opportunities and expectations for restoring dunes as nature-based solutions for climate adaptation on urban shorelines
Ancient water supports today's energy needs
The water footprint for fossil fuels typically accounts for water utilized in mining and fuel processing, whereas the water footprint of biofuels assesses the agricultural water used by crops through their lifetime. Fossil fuels have an additional water footprint that is not easily accounted for: ancient water that was used by plants millions of years ago, before they were transformed into fossil fuel. How much water is mankind using from the past to sustain current energy needs? We evaluate the link between ancient water virtually embodied in fossil fuels to current global energy demands by determining the water demand required to replace fossil fuels with biomass produced with water from the present. Using equal energy units of wood, bioethanol, and biodiesel to replace coal, natural gas, and crude oil, respectively, the resulting water demand is 7.39 × 1013 m3 y−1, approximately the same as the total annual evaporation from all land masses and transpiration from all terrestrial vegetation. Thus, there are strong hydrologic constraints to a reliance on biofuel energy produced with water from the present because the conversion from fossil fuels to biofuels would have a disproportionate and unsustainable impact on the modern water. By using fossil fuels to meet today's energy needs, we are virtually using water from a geological past. The water cycle is insufficient to sustain the production of the fuel presently consumed by human societies. Thus, non‐fuel‐based renewable energy sources are needed to decrease mankind's reliance on fossil fuel energy without placing an overwhelming pressure on global freshwater resources
The PHENIX Experiment at RHIC
The physics emphases of the PHENIX collaboration and the design and current
status of the PHENIX detector are discussed. The plan of the collaboration for
making the most effective use of the available luminosity in the first years of
RHIC operation is also presented.Comment: 5 pages, 1 figure. Further details of the PHENIX physics program
available at http://www.rhic.bnl.gov/phenix
Early Career Aquatic Scientists Forge New Connections at Eco-DAS XV
A sense of kuleana (personal responsibility) in caring for the land and sea. An appreciation for laulima (many hands cooperating). An understanding of aloha ’āina (love of the land). The University of Hawai’i at Manoa hosted the 2023 Ecological Dissertations in Aquatic Sciences (Eco-DAS) program, which fostered each of these intentions by bringing together a team of early career aquatic ecologists for a week of networking and collaborative, interdisciplinary project development (Fig. 1)
Infliximab: 12 years of experience
Rheumatoid arthritis (RA), ankylosing spondylitis (AS) and psoriatic arthritis (PsA) are immune-mediated conditions that share an inflammatory mechanism fuelled by excessive cytokines, particularly TNF. Control of inflammation and rapid suppression of cytokines are important in treating these diseases. With this understanding and the corresponding advent of TNF inhibitors, RA patients, AS patients and PsA patients have found more choices than ever before and have greater hope of sustained relief. As a widely used TNF inhibitor, infliximab has a deep and established record of efficacy and safety data. Extensive evidence - from randomised controlled clinical trials, large registries and postmarketing surveillance studies - shows that infliximab effectively treats the signs and symptoms, provides rapid and prolonged suppression of inflammation, prevents radiologically observable disease progression and offers an acceptable safety profile in RA, AS and PsA. In very recent studies, investigators have observed drug-free remission in some patients. Additionally, infliximab may interfere with rapidly progressing disease in RA by early addition to methotrexate in patients with signs of an aggressive course. Finally, infliximab has been shown to reduce PsA clinical manifestations such as nail involvement. With our current understanding, substantial data and increasing confidence regarding use in practice, infliximab can be considered a well-known drug in our continued campaign against inflammatory rheumatic diseases
Early predictors of impaired social functioning in male rhesus macaques (Macaca mulatta)
Autism spectrum disorder (ASD) is characterized by social cognition impairments but its basic disease mechanisms remain poorly understood. Progress has been impeded by the absence of animal models that manifest behavioral phenotypes relevant to ASD. Rhesus monkeys are an ideal model organism to address this barrier to progress. Like humans, rhesus monkeys are highly social, possess complex social cognition abilities, and exhibit pronounced individual differences in social functioning. Moreover, we have previously shown that Low-Social (LS) vs. High-Social (HS) adult male monkeys exhibit lower social motivation and poorer social skills. It is not known, however, when these social deficits first emerge. The goals of this study were to test whether juvenile LS and HS monkeys differed as infants in their ability to process social information, and whether infant social abilities predicted later social classification (i.e., LS vs. HS), in order to facilitate earlier identification of monkeys at risk for poor social outcomes. Social classification was determined for N = 25 LS and N = 25 HS male monkeys that were 1–4 years of age. As part of a colony-wide assessment, these monkeys had previously undergone, as infants, tests of face recognition memory and the ability to respond appropriately to conspecific social signals. Monkeys later identified as LS vs. HS showed impairments in recognizing familiar vs. novel faces and in the species-typical adaptive ability to gaze avert to scenes of conspecific aggression. Additionally, multivariate logistic regression using infant social ability measures perfectly predicted later social classification of all N = 50 monkeys. These findings suggest that an early capacity to process important social information may account for differences in rhesus monkeys’ motivation and competence to establish and maintain social relationships later in life. Further development of this model will facilitate identification of novel biological targets for intervention to improve social outcomes in at-risk young monkeys
Priorities for synthesis research in ecology and environmental science
ACKNOWLEDGMENTS We thank the National Science Foundation grant #1940692 for financial support for this workshop, and the National Center for Ecological Analysis and Synthesis (NCEAS) and its staff for logistical support.Peer reviewedPublisher PD
Priorities for synthesis research in ecology and environmental science
ACKNOWLEDGMENTS We thank the National Science Foundation grant #1940692 for financial support for this workshop, and the National Center for Ecological Analysis and Synthesis (NCEAS) and its staff for logistical support.Peer reviewedPublisher PD
- …