42 research outputs found

    Media Archeology Lab : experimentation, tinkering, probing : Lori Emerson in conversation with Piotr Marecki

    Get PDF

    Reclaiming the Future with Old Media

    Get PDF
    In this piece Emerson first unpacks why and how the past keeps getting eclipsed by an ever-receding future we seem to have little to no control over. She then proposes six interrelated values we might take from old media: slow, small, open, cooperative, care, and failure. All six values are intentionally opposed to: ungrounded speculation; early adoption in the name of disruption, innovation, and progress; and convenient quick-fixes. Rather than recapitulate these same logics and claim her argument is wholly new or groundbreaking, and contrary to those who have been named as participating in the “dark side of DH” with practices that are “rooted in technocratic rationality or neoliberal economic calculus,” she instead gathers together tactics that many DH community members have already embraced and reframe them in relation to recovering past media traditions for the sake of a reimagined future

    Agronomic responses of corn to stand reducation at vegetative growth stages

    Get PDF
    Yield loss charts for hail associated with stand reduction assume that remaining plants lose the ability to compensate for lost plants by mid-vegetative growth. Yield losses and stand losses after V8 – leaf collar system – and throughout the remaining vegetative stages are 1:1 according to the current standards. We conducted field experiments from 2006 to 2009 at twelve site-years in Illinois, Iowa, and Ohio to determine responses of corn to stand reduction at the fifth, eighth, eleventh, and fifteenth leaf collar stages (V5, V8, V11, and V15, respectively). We also wanted to know whether these responses varied between uniform and random patterns of stand reduction with differences in within-row interplant spacing. When compared to a control of 36,000 plants per acre, grain yield decreased linearly as stand reduction increased from 16.7 to 50% (Table 3), but was not affected by the pattern of stand reduction. This rate of yield loss was greatest when stand reduction occurred at V11 or V15, and least when it occurred at V5. With 50% stand loss, yield was 83 and 69% of the control when stand loss occurred at V5 and V15, respectively. With 16.7% stand loss at V5, V8, or V11, yield averaged 96% of the control. Per-plant grain yield increased when stand loss occurred earlier and was more severe. With 50% stand loss at V11 or V15, per-plant grain yield increased by 37 to 46% compared to the control. Corn retains the ability to compensate for lost plants through the late vegetative stages, indicating that current standards for assessing the effect of stand loss in corn should be reevaluated

    Maize Leaf Appearance Rates: A Synthesis From the United States Corn Belt

    Get PDF
    The relationship between collared leaf number and growing degree days (GDD) is crucial for predicting maize phenology. Biophysical crop models convert GDD accumulation to leaf numbers by using a constant parameter termed phyllochron (°C-day leaf−1) or leaf appearance rate (LAR; leaf oC-day−1). However, such important parameter values are rarely estimated for modern maize hybrids. To fill this gap, we sourced and analyzed experimental datasets from the United States Corn Belt with the objective to (i) determine phyllochron values for two types of models: linear (1-parameter) and bilinear (3-parameters; phase I and II phyllochron, and transition point) and (ii) explore whether environmental factors such as photoperiod and radiation, and physiological variables such as plant growth rate can explain variability in phyllochron and improve predictability of maize phenology. The datasets included different locations (latitudes between 48° N and 41° N), years (2009–2019), hybrids, and management settings. Results indicated that the bilinear model represented the leaf number vs. GDD relationship more accurately than the linear model (R2 = 0.99 vs. 0.95, n = 4,694). Across datasets, first phase phyllochron, transition leaf number, and second phase phyllochron averaged 57.9 ± 7.5°C-day, 9.8 ± 1.2 leaves, and 30.9 ± 5.7°C-day, respectively. Correlation analysis revealed that radiation from the V3 to the V9 developmental stages had a positive relationship with phyllochron (r = 0.69), while photoperiod was positively related to days to flowering or total leaf number (r = 0.89). Additionally, a positive nonlinear relationship between maize LAR and plant growth rate was found. Present findings provide important parameter values for calibration and optimization of maize crop models in the United States Corn Belt, as well as new insights to enhance mechanisms in crop models
    corecore