46 research outputs found

    Simulating Metal Mixing of Both Common and Rare Enrichment Sources in a Low-mass Dwarf Galaxy

    Get PDF
    One-zone models constructed to match observed stellar abundance patterns have been used extensively to constrain the sites of nucleosynthesis with sophisticated libraries of stellar evolution and stellar yields. The metal mixing included in these models is usually highly simplified, although it is likely to be a significant driver of abundance evolution. In this work we use high-resolution hydrodynamics simulations to investigate how metals from individual enrichment events with varying source energies E_(ej) mix throughout the multiphase interstellar medium (ISM) of a low-mass (M_(gas) = 2 × 10⁶ M_⊙), low-metallicity, isolated dwarf galaxy. These events correspond to the characteristic energies of both common and exotic astrophysical sites of nucleosynthesis, including asymptotic giant branch winds (E_(ej) ~ 10⁴⁶ erg), neutron star–neutron star mergers (E_(ej) ~ 10⁴⁹ erg), supernovae (E_(ej) ~ 10⁵¹ erg), and hypernovae (E_(ej) ~ 10⁵² erg). We find the mixing timescales for individual enrichment sources in our dwarf galaxy to be long (100 Myr–1 Gyr), with a clear trend of increasing homogeneity for the more energetic events. Given these timescales, we conclude that the spatial distribution and frequency of events are important drivers of abundance homogeneity on large scales; rare, low-E_(ej) events should be characterized by particularly broad abundance distributions. The source energy E_(ej) also correlates with the fraction of metals ejected in galactic winds, ranging anywhere from 60% at the lowest energy to 95% for hypernovae. We conclude by examining how the radial position, local ISM density, and global star formation rate influence these results

    Gas Loss by Ram Pressure Stripping and Internal Feedback From Low Mass Milky Way Satellites

    Full text link
    The evolution of dwarf satellites of the Milky Way is affected by the combination of ram pressure and tidal stripping, and internal feedback from massive stars. We investigate gas loss processes in the smallest satellites of the Milky Way using three-dimensional, high resolution, idealized wind tunnel simulations, accounting for gas loss through both ram pressure stripping and expulsion by supernova feedback. Using initial conditions appropriate for a dwarf galaxy like Leo T, we investigate whether or not environmental gas stripping and internal feedback can quench these low mass galaxies on the expected timescales, shorter than 2 Gyr. We find that supernova feedback contributes negligibly to the stripping rate for these low star formation rate galaxies. However, we also find that ram pressure stripping is less efficient than expected in the stripping scenarios we consider. Our work suggests that, although ram pressure stripping can eventually completely strip these galaxies, other physics is likely at play to reconcile our computed stripping times with the rapid quenching timescales deduced from observations of low mass Milky Way dwarf galaxies. We discuss the roles additional physics may play in this scenario, including host-satellite tidal interactions, cored vs. cuspy dark matter profiles, reionization, and satellite pre-processing. We conclude that a proper accounting of these physics together is necessary to understand the quenching of low mass Milky Way satellites.Comment: 16 pages, 7 figures. Accepted for publication in Ap

    Metal Mixing and Ejection in Dwarf Galaxies is Dependent on Nucleosynthetic Source

    Get PDF
    Using a high resolution simulation of an isolated dwarf galaxy, accounting for multi-channel stellar feedback and chemical evolution on a star-by-star basis, we investigate how each of 15 metal species are distributed within our multi-phase interstellar medium (ISM) and ejected from our galaxy by galactic winds. For the first time, we demonstrate that the mass fraction probability distribution functions (PDFs) of individual metal species in the ISM are well described by a piecewise log-normal and power-law distribution. The PDF properties vary within each ISM phase. Hot gas is dominated by recent enrichment, with a significant power-law tail to high metal fractions, while cold gas is predominately log-normal. In addition, elements dominated by asymptotic giant branch (AGB) wind enrichment (e.g. N and Ba) mix less efficiently than elements dominated by supernova enrichment (e.g. α\alpha elements and Fe). This result is driven by the differences in source energetics and source locations, particularly the higher chance compared to massive stars for AGB stars to eject material into cold gas. Nearly all of the produced metals are ejected from the galaxy (only 4% are retained), but over 20% of metals dominated by AGB enrichment are retained. In dwarf galaxies, therefore, elements synthesized predominately through AGB winds should be both overabundant and have a larger spread compared to elements synthesized in either core collapse or Type Ia supernovae. We discuss the observational implications of these results, their potential use in developing improved models of galactic chemical evolution, and their generalization to more massive galaxies.Comment: 18 pages, 7 figures (plus 2 page, 2 figure appendix). Accepted to Ap

    Progenitor-mass-dependent yields amplify intrinsic scatter in dwarf-galaxy elemental abundance ratios

    Full text link
    In hydrodynamic simulations, prevailing subgrid chemical-evolution models often use a single, "IMF-averaged" supernova yield, ignoring variations in elemental abundance ratios (particularly [α\alpha/Fe]) in the ejecta of higher- and lower-mass supernova progenitors within a stellar population. To understand the impact of this simplification and understand the impact of more explicit models, we run FIRE simulations of a dwarf galaxy (M((M_\star(z = 0)106M)) \sim 10^6 M_\odot) using nucleosynthetic yields from the NuGrid database that depend on the stellar progenitor mass and metallicity. While NuGrid exhibits lower aggregate α\alpha-element production than default-FIRE yields, we find that its explicit mass dependence substantially widens the intrinsic scatter in the simulated [Fe/H]-[α\alpha/Fe] -- a phenomenon potentially visible in recent observations of dwarf galaxies.Comment: MNRAS submitted. 7 pages; 6 figures. Comments and questions welcom

    Characterizing the Circumgalactic Medium of the Lowest-mass Galaxies: A Case Study of IC 1613

    Get PDF
    Using 10 sight lines observed with the Hubble Space Telescope/Cosmic Origins Spectrograph, we study the circumgalactic medium (CGM) and outflows of IC 1613, which is a low-mass (M_* ~ 10⁸ M_⊙), dwarf irregular galaxy on the outskirts of the Local Group. Among the sight lines, four are pointed toward UV-bright stars in IC 1613, and the other six sight lines are background QSOs at impact parameters from 6 kpc (<0.1R_(200)) to 61 kpc (0.6R_(200)). We detect a number of Si ii, Si iii, Si iv, C ii, and C iv absorbers, most of which have velocities less than the escape velocity of IC 1613 and thus are gravitationally bound. The line strengths of these ion absorbers are consistent with the CGM absorbers detected in dwarf galaxies at low redshifts. Assuming that Si ii, Si iii, and Si iv comprise nearly 100% of the total silicon, we find 3% (~8 × 10³ M_⊙), 2% (~7 × 10³ M_⊙), and 32%–42% [~(1.0–1.3) × 10⁵ M_⊙] of the silicon mass in the stars, interstellar medium, and within 0.6R_(200) of the CGM of IC 1613. We also estimate the metal outflow rate to be Ṁ_(out,Z) ⩾ 1.1 x 10⁻⁵ M_⊙ yr⁻¹ and the instantaneous metal mass loading factor to be η_Z ≥ 0.004, which are in broad agreement with available observation and simulation values. This work is the first time a dwarf galaxy of such low mass is probed by a number of both QSO and stellar sight lines, and it shows that the CGM of low-mass, gas-rich galaxies can be a large reservoir enriched with metals from past and ongoing outflows
    corecore